Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Scheer Solar Economy Renewable Energy for a Sustainable Global Future (Earthscan, 2005)

.pdf
Скачиваний:
42
Добавлен:
22.08.2013
Размер:
2.42 Mб
Скачать

122 THE PATHOLOGICAL POLITICS OF FOSSIL RESOURCES

in regions with large coal deposits, then later along the main lines and flows of the increasingly concentrated energy supply networks. In so doing, they also became centres for the energyintensive service industries. The faster the fossil megacities grew, the more inorganic their sprawling growth.

The fossil city grew only slowly in the first stages, as not all the technologies for harnessing and transporting fossil energy were yet in place. Initially, the only option was to ship large quantities of primary energy to ports on the coast or along rivers. Then came the railway, which opened up the hinterland for large-scale urban growth far from the major navigable waterways. Electricity cables followed, enabling energy to be transported even faster across an even wider area. At the same time, technologies for energy use underwent rapid development. New technologies were coming on-stream all the time; the infrastructure of energy supply and transport was expanding rapidly and energy was flowing into the industrial metropolises as never before. The greatest and fastest growth spurts came from the construction of national power grids and the mass production of automobiles, which increasingly came to shape the development of towns and cities. Nevertheless, there was, in the initial stages at least, still scope for gradual adaptation to industrial developments and thus also opportunities to shape these developments as they occurred.

Students of urban sociology today almost all expect continued migration towards ever larger megacities, thinking the trend towards global sociocultural homogeneity to be irreversible. But in accepting this development as predestined and immutable, they fail to see just how fragile the energy base of these megacities is becoming – and in the developing countries indeed has already become. It does not usually even cross their minds that a change in the course of development is not only desirable, but also possible and desperately needed. Great effort is expended on cataloguing and managing individual problems, yet it has not been possible to prevent these problems from growing in size and spilling out over attempts to contain them. Continued urban expansion can only prolong our dependency on fossil fuels, yet few realize that our present energy system can only be a historical interlude. Only if the

THE DISTORTING EFFECTS OF FOSSIL SUPPLY CHAINS 123

fossil energy system, including nuclear power, were to be replaced by another centralized system would a continuing shift towards mega-urban structures be a theoretical possibility, albeit at the price of the continued destruction of rural communities.

The centralized energy system is also responsible for the creeping homogenization and impoverishment of urban life. When the fossil energy system first gave rise to the industrial centres, they attracted people like magnets. The new cities promised work and easy wealth. The only force acting to counteract or moderate the exploitation and mass misery of the early industrial age, as documented in lurid tones by the first modern social critics, was the growing influence of the organized socialist movement. Cities have shaped our model of civilization: industrial labour, a multiplicity of educational, career, leisure and cultural opportunities, mass media. The growth in capital stock allowed construction on a mammoth scale: buildings for factories, gasworks and waterworks (which now house luxurious apartments); ironwork, from roofing for halls to stations and bridges, complete with latticework and artistic mouldings.5 The only way was up – until, that is, the industrial cities themselves fell into the growth trap. Their industrial foundation vanished, the internal structures it had supported collapsed and environmental degradation gained the upper hand.

The role of energy in the decline of urban diversity

While the scarcity of energy was still a daily reality in almost all the world’s civilizations, living quarters necessarily had to be built from locally available materials, and architecture had to take the prevailing climate and ecological situation into account, making the best use of sun or shade, insulation or cooling. Trees were used as shelter from the wind, slopes for heating, windbreaks for cooling; buildings were circular to maximize energy efficiency, and wood, local stone or earth were used as building materials.6 Across the world, in towns and villages alike, the result was locally coloured variety in building construction, style and materials – the ‘evolution of solar archi-

124 THE PATHOLOGICAL POLITICS OF FOSSIL RESOURCES

tecture’ (Behling).7 The 20th century, however, marked a new departure in architectural history. Where supplies of oil, gas and construction material were easy to obtain, buildings soon lost their climatic and regional variations.

Plentiful supplies of energy and materials gave architects and town planners a completely free hand, unfettered by the restrictions of local climate, geography and ecology. And yet, ironically, the result has been global architectural uniformity. Natural cooling systems were redundant; the electricity grids provided abundant energy for air conditioning and refrigeration. There was no need to make use of natural sources of heat because it was no trouble to ship heating energy from halfway around the globe. Centralized energy and materials supplies presented a golden opportunity to reduce construction costs through mass production and standardization. This resulted in buildings which had ever fewer original features, quickly lost their distinct identity and which had ever shorter useful lives before needing repair or demolition. Whether Berlin or Rio, Paris or Athens, Sydney or Boston, the buildings of architectural modernity were uniform, interchangeable and often difficult to tell apart.

The planning philosophy of the fossil city was formulated in the 1940s by Le Corbusier (1887–1965) in his Athens Charter: division into separate functional zones for living, working, shopping, leisure and traffic.8 Though it spoke to the problems of the fossil city, the Athens Charter did not seek to question the nature of the city itself. Residential areas were to be sheltered from traffic, but at the cost of a huge rise in traffic flows. Where the intention had been more a more functional urban space, the outcome was more complexity, greater loss of people’s time and disrupted communications structures. The emblems of the fossil city are the disconnected spaces of its functional zones: industrial estates, shopping, sport, health, leisure and cultural centres. The result was a functionalism that put a premium on mobility, with ever more space allotted to streets and cars, disrupting the organic life of the various parts of the town. The sole force binding the city together was the dominant traffic corridors. These were also its greatest burdens.

THE DISTORTING EFFECTS OF FOSSIL SUPPLY CHAINS 125

The key element in this model of the city was waged employment in the industrial centres. Where this is lacking, the fossil megacity is faced with internal collapse. Grand visions of the future ‘global city’ are an attempt to paper over this trend. Pundits wax lyrical about metropolises which are home to the headquarters of the global players and a happy hunting ground for providers of consultancy, information and financial services, the advertising agencies, hotel chains and IT firms9 – but how many of the world’s cities can truly fill this role, given the global trend towards mega-mergers and ever fewer corporate headquarters, yet at the same time an ever greater urban population?

The changing world of work and the erosion of the megacity

The initial concentration of energy supply infrastructure in the cities made them privileged economic centres. As fossil energy systems have gone global, however, and networks have been expanded, and as industrial structures have changed across the world, this tie has been weakened. In many industries, the speed and ease with which headquarters can be relocated has grown, beyond even the ability of an increasingly mobile workforce to keep up.

This new corporate mobility is leaving behind the inhabitants of the megacities in their functionally separated residential areas whence they once swarmed out to go to work, to go shopping or for leisure activities. Without sufficient work and wages to support it, urban zoning becomes senseless, leading to ghettoization. Highly paid careers in professional services stand in stark contrast to the increasing numbers of low-skilled service jobs in restaurants, delivery services and cleaning services, usually with low wages paid by the hour. In this ‘self-destructive yearning for the global city’, as Hartmut Häußermann has described the eulogies for this model for urban ‘modernization’, the rising tide of the unemployed and the low-paid is accompanied by increasing dependency on statecountyor borough-level social support.10 In consequence, urban tax revenues are falling. In

126 THE PATHOLOGICAL POLITICS OF FOSSIL RESOURCES

turn, the financial difficulties of borough councils are forcing metropolitan authorities to privatize borough-level responsibilities and to commercialize what were previously cost-free or low-fee public services; access to public spaces becomes more difficult or even unaffordable for many; social stratification increases and rifts widen, leading to increased tension and criminality. The industrial city is doomed to fail. We are nearing the crisis point where fossil fuel reserves fall and prices rise beyond the means of the majority of city-dwellers. As the rot affects greater numbers of urban inhabitants, the first megacities of the established industrialized countries are already sinking inexorably to the level of the developing world. The optimistic visions of urban planners are turned to rubble. As a model for civilization, the fossil megacity has no future; and for most of the world’s cities and their inhabitants, the ‘global city’ is no more than a cruel illusion.

How does the fossil energy system impact on this development? The urban population bears the direct and indirect costs of energy, supplies of fuel and electricity, heating and cooling systems and motor vehicles. In Germany, average annual per capita expenditure on energy is more than 2000(over $1700). This figure does not represent the size of an individual energy bill, as it also incorporates the energy component of expenditure on services and the energy usage of business. If a city’s entire energy needs are met from fossil fuels, then for a city of 1 million, that equates to the sum of 2 billion ($1.7 billion) abstracted from the city’s economy every year. Including food expenditure of 1500 ($1300) per capita, or 1.5 billion ($1.3 billion) in total, this million-inhabitant city must pay a total of 3.6 billion ($3 billion) for its food and energy imports.

The running cost of fossil energy supplies has to be covered by value added in the urban economy. For a long time this worked. Value was created primarily within cities and there was sufficient work on offer for the urban population. However, as industry replaces human labour with machines or finds cheaper labour elsewhere, and as sufficiently well-paid jobs become increasingly scarce and urban unemployment rises to 20 per cent and beyond, the megacities are subjected to a process of wastage and impoverishment. The need to meet daily require-

THE DISTORTING EFFECTS OF FOSSIL SUPPLY CHAINS 127

ments for food and energy is universal, but in the cities, food and energy must also be financed and imported, which makes it more difficult to secure supplies. Destitute inner cities are the unhappy consequence.

The dilemma is stark, yet the response is obvious. The concept for the future is not the ‘global city’ but the ‘solar city’.11 Energy sources must find their way back into the city, and not just to make cities habitable again. ‘The freedom of the city’ might have been the motto in decades past, as the towns and cities of the newly industrializing countries promised a cornucopia of new opportunities for upward mobility. Now the free energy of the sun must be harnessed to liberate individuals and economies from their dependency, to break the shackles of monthly energy bills and render it easier to achieve self-sufficiency in basic needs: food, energy, living space and the opportunity to partake of cultural life. The ‘solar city’ strengthens the economy of the city by the quantity of renewable energy it produces.

This is an idea whose time has come. Even in the industrialized countries, increasing numbers of townand city-dwellers are finding that they can reduce their living costs by producing some of their own food. ‘Urban farming’ is not solely a feature of developing world cities. There are cases where twice as many people make their living from inner-city market gardens as from employment at the minimum wage. There are probably millions in Russia who would have starved over the past few years were it not for their home-grown vegetables. Even in the USA in the 1980s, urban food production grew by 17 per cent.12 Obviously that cannot be replicated in every city, as there is limited space available for crops. Nevertheless, this trend is an indication of how cities are becoming dependent on their inhabitants’ ability to produce their own primary goods. It also highlights how the existence of agricultural enterprises in the surrounding area will become vital for the future development of cities.

There is much greater scope for energy self-sufficiency in the megacities than for self-sufficiency in food. It is entirely possible that in the long term, cities can meet all their energy needs from solar energy. This may not be enough to halt the

128 THE PATHOLOGICAL POLITICS OF FOSSIL RESOURCES

decline of the city, but it is nevertheless an essential precondition for the regeneration of urban areas.

The fossil resource trap closes on the developing world

The model for developing world cities in the post-colonial era has, of course, been industrial development and the energyintensive growth model. The result has been and continues to be a growth explosion with direct and immediate effects. Cities have not had time to adapt. An unprecedented wave of immigration has quickly overloaded their infrastructure. Towns have been ‘opened up’ with hurriedly erected and fast-decaying concrete blocks, connected by a welter of new streets and cabling; they have been engulfed by a ring of shanty towns and desperate slums, and their centres are permanently shrouded in smog. Cities such as Mexico City, São Paulo, Lima, Cairo, New Delhi, Mumbai (Bombay), Jakarta, Istanbul and Karachi, whose populations have long since passed the 10-million mark, are ample testimony to the hopelessness of fossil fuel civilization.

Most of the cities of the industrialized world have reached their growth boundary; overall, their populations are stagnant and, following the marginalization of the agricultural sector, only a small fraction of the population lives in rural areas. The megacities of the developing world, however, are faced with an interminable wave of migration which they are helpless to confront. The majority of the population of the developing world still lives on the land: 80.4 per cent in China, 77 per cent in India, 75 per cent across the rest of Asia as a whole, 73 per cent in sub-Saharan Africa. Vast numbers of people stand waiting at the gates of already hopelessly overloaded cities. The very term ‘least developed countries’ (LDCs) suggests that high rural populations are an indication of lack of development. Particularly high rural populations are found in Burundi (95.7 per cent), Rwanda (94.3 per cent), Burkina Faso (91.5 per cent), Uganda (91.2 per cent), Malawi (90.9 per cent), Ethiopia (89.5 per cent), Niger (87.5 per cent), Eritrea (86.5 per cent), Tanzania (82.2 per cent) and Kenya (83.9 per cent) in Africa, and in Nepal (93.5 per cent), Bangladesh (88.7 per

THE DISTORTING EFFECTS OF FOSSIL SUPPLY CHAINS 129

cent), Cambodia (87.6 per cent) and Laos (86.6 per cent) in Asia.13 The implicit message is to ‘get out while the going’s good’ – as if the purgatory of the city slums were an advance on rural destitution.

The ultimate causes of this migration are poor management or complete absence of agricultural development. In particular:

agricultural ‘modernization’ has robbed smallholders of the means to make a living; and

the rural population either cannot afford the commercial energy supplies necessary for economic and cultural development, or have no means of accessing them because governments have concentrated their efforts on supplying the cities.

Rural depopulation and the catastrophic growth of cities are the visible consequences of the energy trap in which the developing world finds itself.14 Hardest hit is the poorest continent, Africa, which Axelle Kabou describes in her book Et si l’Afrique refusait le développement? (What if Africa says no to development aid?) as ‘both under-developed and under-analysed’.15 The only way out of this cul-de-sac is to use renewable energy to provide electricity and fuel for the economic development of agriculture, the trades and small businesses in rural regions.

Academic investigations into the causes of under-develop- ment and outbursts of violence in the developing world give no consideration to this fundamental energy crisis, which only demonstrates their intellectual poverty. One example of this blinkered attitude is a publication by Stiftung Wissenschaft und Politik (Foundation for Science and Politics), the official foreign-policy think-tank for the German federal government, which examines the question of conflict prevention and resolution in Africa: not one word on the energy crisis, which is a direct cause of territorial conflict.16 In the late 1950s, the American Walt Rostow documented five stages of economic growth whose order of occurrence is constant and unchanging. Starting from traditional agrarian society, they lead through the first industrial activities to a general industrial boom. This

130 THE PATHOLOGICAL POLITICS OF FOSSIL RESOURCES

economic activity is then transformed into market economic structures, culminating in an affluent urban society.17 The social and cultural consequences resulting from the imposition of this Industrial Revolution-inspired developmental model on most developing world countries have been documented on numerous occasions. Attempts to build a developing-world socialism that would tie into local cultural heritage were also failures, as they lacked an adequate answer to the basic economic needs of developing countries. There was no concept of sustainable economic development that could have taken the place of the stagnating rural subsistence economy. Developingworld socialism was also founded on the industrialization model, but used centralized economic planning to achieve it. Agricultural smallholdings were collectivized, or attempts to preserve them failed to secure the provision of the accessible and affordable supplies of energy needed to run motors, agricultural machinery and industrial plant. In consequence, the productivity of smallholders and skilled tradesmen fell in comparison to large-scale industry, and they were pushed ever further out to the margins of society.

The alternative would have been – and still is, more than ever

– to introduce autonomous, locally based energy systems. As the history of solar energy illustrates,18 the necessary technology – from small-scale hydro to small wind turbines, from biogas plants to wood gasification – has been available for a long time, yet only a few countries have made even partial use of it. The millions of biogas plants that Chinese smallholders have built for themselves are one exception,19 but even these are used only for cooking and heating, not for generating electricity or for producing fuel to run labour-saving machinery. The energy strategies of developing countries followed what was regarded as the progressive model of centralized fuel and electricity supplies. ‘Modern’ centralized systems, however, cut economic development adrift from its sociocultural basis. Ninety-seven per cent of Tanzania’s generating capacity, for example, is available only in cities. Distribution grids were – and of economic necessity had to be – restricted to urban centres as long as electricity generation relied on central power stations.20 Lesotho produces 93 per cent of its electricity in large hydropower stations, a situa-

THE DISTORTING EFFECTS OF FOSSIL SUPPLY CHAINS 131

tion that fosters economic and social trends which are foreign to the structure of the country; only 7 per cent comes from more appropriate small-scale hydro plants.21

The World Bank (and in its wake other development banks and respective national strategies for development) has been deliberately pushing this one-size-fits-all strategy for decades, closely paralleling the interests of the industrialized countries and the fossil resource corporations. This has been documented in many critical analyses of the World Bank’s activities. Of the $292 million the World Bank pumped into projects in Brazil between 1952 and 1963, $264 million alone was spent on electrification with central power stations. The energy needs of the resource corporations have always soaked up a large proportion of developmental lending, in order to guarantee supplies of resources from the developing world to meet the needs of the West. Many hydropower dams were erected solely to supply cheap electricity for mining activities and oreprocessing plants, often with fateful consequences for the environment. Around half of all aluminium smelters draw their power from such sources.22 Developing countries were deliberately pushed into dependency on the crude-oil giants, for example by providing finance for roads rather than railways, or by refusing finance for countries to develop their own oil extraction and refining industries. The existence of independent capacity would have run contrary to the market interests of the oil corporations.23 Equally, the oil companies exerted massive influence on the World Bank to finance factories for the production of fertilizers. A solid 58 per cent of all lending in 1979 was for such factories. ‘Commercial farming’ was promoted ahead of smallholders, entailing greater use of large agricultural plant and oil-derived pesticides.24 In each case, the rationale for these projects was the low investment cost by comparison with the output of energy, resources and foodstuffs achieved. World Bank executives never questioned whether these projects were of benefit to the trade balances and the sociocultural development of developing countries, or whether they were in fact counterproductive.

More recent analyses have shown that this World Bank policy was not confined solely to the 1950s, 1960s and 1970s.

Соседние файлы в предмете Экономика