Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Scheer Solar Economy Renewable Energy for a Sustainable Global Future (Earthscan, 2005)

.pdf
Скачиваний:
42
Добавлен:
22.08.2013
Размер:
2.42 Mб
Скачать

222 THROWING OFF THE FOSSIL SUPPLY CHAINS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon dioxide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

water

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global carbon

 

 

 

 

 

 

 

 

 

 

 

 

Global water

 

 

cycle

 

 

 

 

Biodegrading

 

 

 

 

 

 

cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxygen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other plant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Natural paints

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

materials

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Closed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flax oil

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oxygen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kroppenstedt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oil cake

 

 

oil mill

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal feed

Closed

Flax seed

 

 

 

 

Flax straw

 

 

 

 

nitrogen

 

 

 

 

 

 

 

 

 

 

(regional)

cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combine

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

harvester

 

 

 

 

 

Car body

 

 

 

 

 

 

 

Dung

 

 

 

 

Closed

 

components

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flax plant

mineral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No insecticides, fungicides or sewage sludge;

 

 

 

 

 

 

 

 

 

 

halogen-free herbicide, maximum 2 x 30kg/ha;

 

 

 

 

 

 

 

 

 

 

 

 

mineral fertilizers < 80kg/ha

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Kroppenstedt oil mill, Germany, unpublished report

Figure 7.3 The range of applications of a solar raw material

problem, in that vast harvests are needed to obtain commercially viable quantities. For this reason, solar resources can and should not be cultivated for one specialized purpose alone. The case for organic farming practices improves once the opportunities for and economic advantages of comprehensive multipurpose applications for plant resources and residues are recognized, as depicted in Figure 7.3. Whereas the process of transforming fossil raw materials into chemical products produces toxic waste, the use of solar raw materials opens up the possibility of turning waste disposal costs into additional profit centres. All plant residues not required for the production of a particular product can always be fermented to produce biogas. Productivity considerations alone would lead a chemical

THE UNTAPPED WEALTH OF SOLAR RESOURCES 223

industry based on solar raw materials to draw its energy from biological sources. Combining energy generation with material uses simply makes more efficient use of biomass inputs.

The choice is between an industrial focus on a small number of basic products and an agricultural focus on a small number of arable crop species on the one hand, and a multiplicity of basic products and thereby a diverse base of smaller agricultural businesses on the other. The choice is between coarse and fine, single-operator mass cultivation and pluralistic agriculture, monocultural versus polycultural resource production and use. Solar raw materials are vastly superior to a fossil resource base that does not measure up to our current level of knowledge and understanding and which thus keeps production far below the levels that can be achieved.

Chemical products from fossil hydrocarbons are the primary cause of our current waste problem. Breaking synthetic compounds back down into their component molecules is either impossible, or the procedure is complicated and costly. This drastically reduces the scope for recycling, as these substances either do not degrade naturally, or do so only slowly, and so must either be buried or burnt, with woeful environmental consequences. Chemical products produced from plants, however, are not only recycled by nature itself, but their combustion does not release harmful pollutants. This greatly reduces the scale of the waste problem. In addition, people will find waste easier and cheaper to manage. In place of the waste separation regimes in force in Germany and other countries, rubbish will be reduced to two simple categories: easily recyclable metal waste and organic refuse. Recycling of waste itself thus becomes an integral component of a renewable energy system. This stands in stark contrast above all to today’s petrochemical products, which usually contain heavy metal additives. In return for marginally lower purchase prices, the consumer is burdened with considerably higher waste disposal costs – yet another example of how the fossil resource industry is hampering the development of productive business models.

In view of the scope for resource substitution, the environmental advantages and the greater productivity gains that solar raw materials offer small and medium-sized enterprises, a

224 THROWING OFF THE FOSSIL SUPPLY CHAINS

blanket rejection of the idea of a solar resource base on the basis of the negative experiences of ‘modern’ agricultural production would be counterproductive. The existence of dangers (see Chapter 2 for further discussion) cannot be denied. Industrial companies have frequently been known to sacrifice even their own long-term interests for short-term gain, and businesses certainly do not have any consideration for other companies in the industry that are consciously pursuing the non-conventional alternative – quite the opposite. However, anyone who rejects reorientation towards solar raw materials because environmental problems may result must still compare such problems with the consequences of fossil resource consumption. But above all, anyone who rejects a comprehensive transition is leaving the potential of solar resources solely to those who seek to integrate them into the existing fossil-ized structures. That way lies the monoculture

– unnecessary, and incapable of tapping the full wealth of solar resources.

Most energy experts, and equally most experts from the environmental lobby who concern themselves with environmentally damaging substances, do not see energy and raw materials as two sides of the same problem. By contrast, the energy and chemical industries, because of their mutual need for fossil hydrocarbons, are well aware of their common interests, even if they do not say so in public. A breakthrough in solar energy use which brought about a fall in crude oil and natural gas consumption would quickly strip fossil petrochemical precursor substances of their current cost advantage over solar materials. The cost of fossil energy would rise if the market for the products of the chemical industry were to shrink. In sum: the more solar raw materials come to replace fossil ones, the more the replacement of fossil by renewable energy sources will be accelerated. This is precisely why the transition towards solar energy and solar raw materials should be seen as a strategic whole. A unitary strategy would make it possible to see through the opposition arguments; solar opportunities would become more clearly visible and tangible, and environmental policy could go beyond the boundaries that have obviously been constraining it hitherto.

THE UNTAPPED WEALTH OF SOLAR RESOURCES 225

As recognition of the wealth of solar resources builds, the economic logic of a solar resource industry will gain the ascendancy. There are two essential maxims:

1In the manufacture of chemical products, solar raw materials must be preferred to fossil raw materials wherever an equivalent product can be produced from solar inputs.

2Besides their role as food crops, the use of plants as raw materials has priority over their use as an energy source.

This latter principle does not recant on the goal of meeting energy needs from plant resources, nor does it reduce the potential for energy crops – there are sufficient plant resources to meet the need for nutrition, raw materials and energy. There is also no need to renounce energy crops in order to conserve plant resources for the future: solar raw materials are regenerable. As long as provision is made for future crops, it is possible to switch quickly from one use to the next: from food crops to energy crops to industrial materials, and vice versa. What is necessary – and basic economic management – is to maintain the capacity for agricultural production, from land fertility to biodiversity. Integrated schemes make the most sense, whereby agricultural crops for the different purposes of producing food, raw materials and energy complement each other. The upshot would be a far quicker transition to complete replacement of fossil resources, up to and including fertilizers and pesticides.

The real biotechnology: materials science, not genetic engineering

At first sight, it might seem that industry has already recognized the potential of solar materials. Biotechnology has become a byword for technological innovation and industrial modernization. But it is precipitate to equate – as many do – biotechnology with genetic engineering. Proponents of genetic engineering deliberately encourage this misconception. In the face of ethical reservations and mounting public mistrust, the genetics industry has come to prefer the term ‘bioand genetic technology’, or even simply ‘biotechnology’ – effectively ‘greenwashing’

226 THROWING OFF THE FOSSIL SUPPLY CHAINS

genetic engineering. Yet biotechnology is much more than this. It also encompasses fermentation techniques, for example, which have nothing to do with genetic manipulation. The real task of biotechnology ought to be research into the variety of applications to which biological materials can be put.

Reducing the scope of biotechnology to the genetic engineering of people, animals and plants distracts from its real potential: harnessing the wealth of photosynthetic processes that evolution has produced, and which new mutations continue to produce, if we give them half a chance. According to a study by Daniel Querol, every plant has 10,000 genes on average – around 4 billion genes in total for the 400,000 agricultural plants. Every gene has a roughly even probability of mutation, and 400 million years of reproduction behind it. If every year one mutation occurs in every species, then new varieties of each plant are continually being produced, each with 10,000 genes.24 Natural selection determines how many survive, and what has survived has always been useful. There can be no doubt that the plant kingdom is a cornucopia of ever-increasing riches, constantly in need of new and further research, and as a field of scientific research it offers by far the greatest reward in terms of tapping the true wealth of natural resources.

Concentrating on this field and uncovering the commercial applications is what will really make biotechnology count. The scientific search for what nature offers of its own accord in terms of resource wealth – as measured by the resource needs of industry and agriculture – will be much more profitable than the current focus of biotechnology research: defining a material need and manipulating genes and breeding transgenic plants for as long as it takes to fill the specified need.

It is, however, no coincidence that genetic manipulation is currently in the spotlight. Wresting natural phenomena from their context is hallowed scientific tradition. The chemical sciences, writes Hermann Fischer in his critique of ‘hard chemistry’, is steeped in the:

prejudice that naturally occurring substances neither have the right characteristics nor occur in sufficient quantities to meet

THE UNTAPPED WEALTH OF SOLAR RESOURCES 227

the major material needs of industrialized societies. It follows from this axiomatic assumption of a qualitatively and quantitatively inadequate natural world that the goal of chemists should be to manufacture their products as far as possible independently of natural processes.25

What is unavoidable with petrochemistry is applied to biological materials as method. Gene-orientated biotechnology also suits the marketing needs of the chemical industry, as it seems to offer the fastest means of developing a commercial solution to a specific material need – or at least, far faster than the traditional methods of plant breeding. The current priorities are so-called ‘red biotech’ – for medicinal, therapeutic and diagnostic purposes – and ‘green biotech’ for agriculture and food products.

One example is the attempt to make plants pest-resistant by, in effect, writing the pesticide into their genetic code. The rationale for this manipulation is to reduce the need for conventional pesticides while helping in the global fight against starvation. If, on the other hand, biotechnology were to follow the interests of agricultural enterprises rather than the chemical industry, other solutions would also be available, as the Germano-Brazilian agricultural expert and one-time Brazilian environment minister José Lutzenberger never tires of pointing out. For example, in place of pesticides, one might use diluted liquid manure or sugar-enriched ethanol, both of which are inevitable by-products of agricultural production. This method would also strengthen the plants’ immune systems.26 The chemical industry’s other objective in developing pest-resistant plants is to make early provision for replacing their petrochemical pesticide products when the fossil hydrocarbons dry up. The global top ten pesticide producers – Ciba-Geigy, ICC, Rhone-Poulenc, the US corporations Du Pont, Dow Elanco and Monsanto, Bayer, Hoechst and BASF and the Anglo-Dutch Shell (in total three German and three US companies) – have a combined turnover on their pesticide products of $5 billion. Some of these companies also figure in the top ten seed merchants, who seek – and have the ability – to leverage GM seed to expand and ultimately monopolize their markets.27

228 THROWING OFF THE FOSSIL SUPPLY CHAINS

The justification given for genetic manipulation is specious, and does not stand up to close scrutiny. The antistarvation argument has been used and abused time and again in decades past. The stated aim of the so-called ‘green revolution’ several decades ago was to use industrial agribusiness methods to increase yields across the board. In fact, the effect was just the opposite, although the statistics still trumpet success. Lutzenberger gives one example which is representative of the real impact of agricultural modernization:

It is argued that the native Indian farmers in Chiapas, Mexico, for whom opposition to NAFTA (the North American common market) is a survival issue, are backward. They produce only two tonnes of maize per hectare versus six tonnes per hectare on modern Mexican plantations. But this is only one side of the coin: the modern plantation produces six tonnes a hectare, end of story. But the Indian cultivates a mixed crop on the same land area. Beans twining round the maize stalks, fruit, pumpkins, sweet potatoes, tomatoes and several kinds of vegetable, fruits and medicinal herbs. He feeds his calves and hens on the same land. He produces a good 15 tonnes of foodstuffs per hectare, and all without commercial fertilizers or pesticides and without the aid of a bank, government or transnational company.28

Yet what appears in the statistics is 6 tonnes of maize versus 2 tonnes. Furthermore, the food crops that a farmer relinquishes in order to increase his production to 6 tonnes have to be paid for out of what he does grow. He may have a higher income, but he also pays more for his production and his own food, to the detriment of the environment. Small wonder that the ever lower prices the monopoly purchasers pay him for his crop force him to give up his business and plunge him into destitution – and that the large-scale agribusiness firms either directly dependent on or owned by the food-processing industry flourish.

This agricultural madness culminates in the ever-growing dependency of agricultural enterprises on seed monopolists and patent-owners. The money that used to be spent on pesticide is now spent on pesticide-enhanced seed. Fields used to

THE UNTAPPED WEALTH OF SOLAR RESOURCES 229

grow pest-resistant plants cannot then be used to cultivate other plants.29 Gene patents will ensure that food-processing and chemicals companies are working towards comprehensive patent coverage by offering ever more hybrid plants. These plants have only a limited capacity for reproduction; a farmer wanting to collect seed from such plants must settle for inferior quality. The corporations are also seeking to develop ‘terminator genes’ which will render plants incapable of reproduction.30 Farmers will become utterly dependent on seed merchants. This development is driven by purely commercial monopoly interests; it implies an organized campaign to supplant natural varieties, and the end of the free farming community across the globe on the basis of state-patented theft of organisms or parts of organisms, all in the name of the global ‘free’ market and the global fight against starvation.

On top of that, genetic engineering of plants – from the laboratory to field trials – is associated with high unit costs. Industry is thus strongly motivated to see that the new seed finds widespread use, and all available political strings are pulled to this end. Political institutions, through their research funding, have increasingly endorsed this ruinous form of biotechnology, as Ulrich Dolata documents in his study of corporate strategy, research programmes and technology competition in the area of genetic technology.31

The net effect of all this is systematic elimination of biological opportunities, which flies in the face of the wealth of the natural world. A recent report on the biotechnology industry in Germany contains the following passage under the heading ‘1998 optimism’: ‘Genetically modified microorganisms, animals and plants will bring about sustained change to agricultural, medical and industrial processes.’32 This ‘sustained change’ has nothing to do with sustainable production methods: the current understanding of biotechnology aims to create plants which do not last, and to use fewer, rather than more, varieties. The direction of change must be reversed, and the prime task of biotechnology must be focused research into existing species and their sustainable use.

We need to put nature to economic use to supply our material needs. The problems arise when nature is selectively

230 THROWING OFF THE FOSSIL SUPPLY CHAINS

manipulated without consideration for ecological systems and with no attempt to see, appreciate and understand them in their entirety. We cannot simply apply the methods and procedures of fossil resource use to the economic exploitation of nature. In all probability, genetic research, with its overblown fixation on genetic manipulation with unforeseeable consequences, would proceed with a good deal more caution and with more attention to exploring the countless ways in which existing plant varieties can be used, if the patenting of genes and thus their exclusive use by individual companies were politically offlimits. The patent offices, governments and parliaments who have caved in to barefaced pressure from industrial corporations like Monsanto to allow genes to be patented must bear the responsibility for the competition among companies to manipulate ever more genes and for the biotech industry’s headlong rush in the wrong direction.

C H A P T E R 8

The profitability of renewable energy and resources

AN IMMEDIATE AND comprehensive transition to solar energy must take priority over all other economic considerations. Any further delay will cost society more than it would to make the transition. The quicker and more comprehensively fossil energy and resources can be supplanted by their solar counterparts, the greater the cost saving to society and the less the strain on government budgets threatened by ever higher clean-up costs in the wake of fossil-fuel-induced catastrophe, be it storm or flood damage or regional wars over energy, the growing cost of waste disposal or the cost of maintaining an ever more bloated environmental protection bureaucracy. Almost all environmental damage can be traced to the use of fossil and nuclear energy and fossil raw materials. The greater the investment in solar resources today, the lower the costs imposed on tomorrow.

The longer this transition is postponed, the more costly it will be to implement, as the external costs of the fossil resource base are swelling exponentially.

Yet despite modern society’s propensity for squander and waste, the energy debate is being conducted in the most pernickety and parsimonious of terms. There must be a thorough cost–benefit analysis, we are told, to determine whether we can ‘afford’ a sustainable energy supply. At least, prominent politicians and businessmen seem to assume that society is inclined and compelled to think in such penny-pinch-

Соседние файлы в предмете Экономика