Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб.раб.по механике и молекулярной физике.DOC
Скачиваний:
21
Добавлен:
01.06.2015
Размер:
3.19 Mб
Скачать

Библиографический список

1.Трофимова, Т. И. Курс физики / Трофимова Т.И. – М.: Академия, 2004. – §16, 140–142.

2. Савельев, И. В. Курс общей физики в 3-х т. Т.1 / И. В. Савельев.– СПб.: Лань, 2005. – §38, 39.

3. Кингсеп, А. С. Основы физики: в 2-х т. Т. 1 / А. С. Кингсеп, Г. Р. Локшин, О. А. Ольхов. – М.: Физматлит, 2001. – Гл. 2 § 2.1, 2.2, 2.3.

4. Сивухин, Д.В. Общий курс физики: в 5-ти т. Т.1 / Д. В. Сивухин. – М.: Физматлит МФТИ, 2005. – § 39,40.

5. Курс физики: Учебник для вузов: в 2-х т. Т. 1 / Под ред. В. Н. Лозовского. – СПб.: Лань, 2006. – Гл. 1.6 § 1.33. Гл. 3.2 § 3.3, 3.7.

ЛАБОРАТОРНАЯ РАБОТА № 14.

Изучение колебаний струны

Цель работы: наблюдать собственные колебания гибкой однородной струны, натянутой между двумя неподвижными точками; исследовать зависимость скорости распространения поперечных колебаний (скорости, с которой передвигается возмущение по струне) от натяжения струны.

Оборудование: установка для изучения колебаний.

Общие сведения

Если натянуть струну и возбудить в ней колебания, то по струне побегут волны, которые, отражаясь от закрепленных концов и, складываясь друг с другом, создают сложную картину колебаний.

Рассмотрим, как распространяются волны по струне. Для этого оттянем струну, а затем ее отпустим. Созданное нами возмущение передвигается по струне, не меняя своей формы. Такое перемещающееся возмущение называется бегущей волной. В нашем случае отклонение частиц струны происходит в направлении, перпендикулярном направлению движения волны (направлению струны). Такие волны называются поперечными.

Скорость, с которой передвигается возмущение по струне, называется скоростью волны. Обозначим ее буквой u. Эта скорость не имеет ничего общего со скоростью u, которую приобретают частицы струны в процессе прохождения волны. Эти две скорости в поперечной волне перпендикулярны друг другу. Не равны и их численные величины. Скорость u зависит от того, насколько сильно была оттянута струна перед тем, как ее отпустили. Эта скорость непрерывно меняется во времени и меняет знак, когда частицы струны изменяют направление своего движения. Скорость волны u определяется только плотностью материала струны и ее натяжением.

Запишем уравнения двух плоских гармонических волн, распространяющихся вдоль оси х в противоположных направлениях:

, (1)

, (2)

где y1, y2 - смещение точек струны от положения равновесия, А - амплитуда, w - круговая частота колебаний, k – волновое число (k = 2π/λ).

Волна (1) перемещается в сторону увеличения х, волна (2) - в сторону уменьшения х; х – координата колеблющейся точки.

Сложив эти уравнения и, преобразовав результат по формуле для суммы косинусов, получим уравнение стоячей волны

y = y1 + y2 = 2Acos(kx)·cosωt. (3)

Заменим волновое число k его значением 2π/λ. Тогда уравнение (3) примет вид

y = (2Acos2πx/λ)cosωt. (4)

В стоячей волне все точки колеблются в одинаковой фазе, а их амплитуда

зависит от x. Точки стоячей волны, в которых отсутствует смещение, называют узлами, а точки, в которых амплитуда колебаний максимальна – пучностями, рис. 1.

Координаты узлов стоячей волны найдем из условия

.

Тогда

,

где n- любые целые числа (n= 0,1, 2, 3, ...). Координаты узлов имеют значения

. (5)

Аналогично получается выражение для координаты пучностей

. (6)

Из формул (5) и (6) видно, что соседние узлы или пучности в стоячей волне отстоят друг от друга на половину длины волны λ/2.

Длина волны определяется как

, (7)

где υ – скорость волны, ν – частота колебаний в герцах.

Частота колебаний, при которой на длине струны укладывается одна полуволна, называется основным тоном. Все остальные стоячие волны носят название обертонов. В нашем случае выражение (7) можно переписать

, (8)

где L - длина струны.

Тогда частота собственных колебаний струны будет

. (9)

Строгий расчет скорости распространения волны в струне приводит к дифференциальному уравнению в частных производных (к так называемому волновому уравнению). Такой расчет выходит за рамки нашего курса, поэтому для вывода применим метод анализа размерностей.

Опыт показывает, что существует зависимость частоты стоячих волн, следовательно, и скорости u, от натяжения струны, ее массы и длины. Запишем эту зависимость

, (10)

где c - безразмерный коэффициент; a, b, g - неизвестные показатели степени.

Распишем размерность правой и левой части уравнения (10):

. (11)

Равенство (11) возможно, если показатели у одноименных величин, стоящих слева и справа, равны, т.е.

. (12)

Из системы уравнений (12) находим a=-1/2, b=1/2, g=1/2.

Подставляя значения a, b, g в (11), находим

(13)

При с = 1 формула (13) совпадает с теоретической.

Итак,

, (14)

где r и d - плотность материала струны и ее диаметр, соответственно, F - сила натяжения струны.