Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
420
Добавлен:
03.10.2013
Размер:
157.7 Кб
Скачать

16

3.5 Ионный обмен

Значительное количество протекающих в природе и осуществляемых на практике процессов являются ионообменными. Ионный обмен лежит в основе миграции элементов в почвах и организме животных и растений. В промышленности его применяют для разделения и получения веществ, обессоливания воды, очистки сточных вод, концентрирования растворов и др. Обмен ионами может происходить как в гомогенном растворе, так и в гетерогенной системе. В данном случае под ионным обменомпонимают гетерогенный процесс, посредством которого осуществляется обмен между ионами, находящимися в растворе и в твердой фазе, называемойионитом или ионообменником. Ионит сорбирует ионы из раствора и взамен отдает в раствор ионы, входящие в его структуру.

3.5.1. Классификация и физико-химические свойства ионитов

Ионообменные сорбенты, ионитыэто полиэлектролиты, которые состоят изматрицы– неподвижных групп атомов или молекул (высокомолекулярных цепей) с закрепленными на них активнымиионогеными группамиатомов, которые обеспечивают его ионообменную способность. Ионогенные группы, в свою очередь, состоят из неподвижных ионов, связанных с матрицей силами химического взаимодействия, и эквивалентного им количества подвижных ионов с противоположным зарядом –противоионов. Противоионы способны перемещаться под действием градиента концентраций и могут обмениваться на ионы из раствора с тем же зарядом. В системе ионит - раствор электролита, наряду с распределением обменивающихся ионов, происходит также перераспределение между этими фазами молекул растворителя. Вместе с растворителем в ионит проникает некоторое количествокоионов(ионов, одноименных по знаку заряда с фиксированными). Поскольку электронейтральность системы сохраняется, вместе с коионами в ионит дополнительно переходит эквивалентное им количество противоионов.

В зависимости от того, какие ионы подвижны, иониты делят на катиониты и аниониты.

Катионитысодержат неподвижные анионы и обмениваются катионами, для них характерны кислотные свойства – подвижный ион водорода или металла. Например, катионитR/SO3-H+(здесьR– структурная основа с неподвижной функциональной группойSO3-и противоионом Н+). По виду содержащихся в катионите катионов его называют Н-катионитом, если все его подвижные катионы представлены только водородом, илиNa-катионитом, Са-катионитом и т.п. Их обозначаютRH, RNa, R2Ca, гдеR – каркас с неподвижной частью активной группы катионита. Широко используются катиониты с неподвижными функциональными группами –SO3-, -РО32-, -СОО-, -AsO32-и др.

Анионитысодержат неподвижные катионы и обмениваются анионами, для них характерны основные свойства – подвижный гидроксид-ион или ион кислотного остатка. Например, анионитR/N(CH3)3+OH-, с функциональной группой -N(CH3)3+и противоионом ОН-. Анионит может быть в разных формах, как и катионит: ОН-анионит илиROH,SO4-анионит илиRSO4, гдеR- каркас с неподвижной частью активной группы анионита. Наиболее часто применяют аниониты с неподвижными группами –[N(CH3)3]+, -[N(C5H5)3]+, NH3+,NH+и др.

В зависимости от степени диссоциации активной группы катионита, и соответственно от способности к ионному обмену, катиониты делят на сильнокислотные и слабокислотные. Так, активная группа –SO3Н полностью диссоциирована, поэтому ионный обмен возможен в широком интервале рН, катиониты, содержащие сульфогруппы относят к сильнокислотным. К катионитам средней силы относятся смолы с группами фосфорной кислоты. Причем, для двухосновных групп, способных к ступенчатой диссоциации, свойствами кислоты средней силы обладает только одна из группировок, вторая ведет себя уже как слабая кислота. Поскольку эта группа в сильнокислой среде практически не диссоцииирует, поэтому данные иониты целесообразно применять в слабокислой или щелочной средах, при рН4. Слабокислотные катиониты содержат карбоксильные группы, которые даже в слабокислых растворах мало диссоциированы, их рабочий диапазон при рН5. Существуют также бифункциональные катиониты, содержащие как сульфогруппы, так и карбоксильные группы или сульфо- и фенольные группы. Эти смолы работают в сильнокислотных растворах, а при высокой щелочности резко увеличивают свою емкость.

Аналогично катионитам аниониты делят на высокоосновные и низкоосновные. Высокоосновные аниониты содержат в качестве активных групп хорошо диссоциированные четвертичные аммониевые или пиридиновые основания. Подобные аниониты способны к обмену анионами не только в кислых, но и щелочных растворах. Средне- и низкоосновные аниониты содержат первичные, вторичные и третичные аминогруппы, которые являются слабыми основаниями, их рабочий диапазон при рН89.

Используют также амфотерные иониты - амфолиты, в состав которых входят функциональные группы со свойствами, как кислот, так и оснований, например, группировки органических кислот в сочетании с аминогруппами. Некоторые иониты, помимо ионообменных свойств обладают комплексообразующими или окислительно-восстановительными свойствами. Например, иониты, содержащие ионогенные аминогруппы, дают комплексы с тяжелыми металлами, образование которых идет одновременно с ионным обменом. Ионный обмен можно сопровождать комплексообразованиемвжидкой фазе, регулируя его значением рН, что позволяет производить разделение ионов. Электроноионообменники используются в гидрометаллургии для окисления или восстановления ионов в растворах с одновременной их сорбцией из разбавленных растворов.

Процесс десорбции поглощенного на ионите иона называют элюированием, при этом происходит регенерация ионита и перевод его в начальную форму. В результате элюирования поглощенных ионов, при условии, что ионит достаточно «нагружен», получают элюаты с концентрацией ионов в 100 раз больше, чем в исходных растворах.

Ионообменными свойствами обладают некоторые природные материалы: цеолиты, древесина, целлюлоза, сульфированный уголь, торф и др., однако для практических целей их почти не применяют, поскольку они не имеют достаточно высокой обменной емкости, стойкости в обрабатываемых средах. Наибольшее распространение получили органические иониты – синтетические ионообменные смолы, представляющие собой твердые высокомолекулярные полимерные соединения, в состав которых введены функциональные группы, способные к электролитической диссоциации, поэтому их называют полиэлектролитами. Их синтезируют поликонденсацией и полимеризацией мономеров, содержащих необходимые ионогенные группы, или присоединением ионогенных групп к отдельным звеньям ранее синтезированного полимера. Полимерные группы химически связываются между собой, сшиваются в каркас, то есть в пространственную трехмерную сетку, называемую матрицей, с помощью взаимодействующего с ними вещества - кресс-агента. В качестве сшивки часто используют дивинилбензол. Регулируя количество дивинилбензола, можно изменять размеры ячеек смолы, что позволяет получить иониты, избирательно сорбирующие какой-либо катион или анион за счет "ситового эффекта", ионы, имеющие размер, больший, чем размер ячейки, не поглощаются смолой. Для увеличения размера ячеек используют реагенты с более крупными, чем у винилбензола молекулами, например, диметакрилаты этиленгликолей и бифенолов. За счет применения телогенов, веществ препятствующих образованию длинных линейных цепей, достигается повышенная проницаемость ионитов. В местах обрыва цепей возникают поры, за счет этого иониты приобретают более подвижный каркас и сильнее набухают при контакте с водным раствором. В качестве телогенов используют четыреххлористый углерод, алкилбензолы, спирты и др. Полученные таким способом смолы имеют гелевуюструктуру или микропористую. Для получениямакропористых ионитов в реакционную смесь добавляют органические растворители, каковыми служат высшие углеводороды, например изооктан, спирты. Растворитель захватывается полимеризующейся массой, а после завершения образования каркаса отгоняется, оставляя в полимере поры большого размера. Таким образом, по структуре иониты делятся на макропористые и гелевые.

Макропористые иониты имеют лучшие кинетические характеристики обмена по сравнению с гелевыми, так как обладают развитой удельной поверхностью 20-130 м2/г (в отличии от гелевых, имеющих поверхность5 м2/г)и порами большого размера - 20-100 нм, что облегчает гетерогенный обмен ионами, который осуществляется на поверхности пор. Скорость обмена существенно зависит от пористости зерен, хотя она обычно не влияет на их обменную емкость. Чем больше объем и размер зерен, тем быстрее внутренняя диффузия.

Гелевые ионообменные смолы состоят из гомогенных зерен, в сухом виде не имеющих пор и непроницаемых для ионов и молекул. Они становятся проницаемыми после набухания в воде или водных растворах.

Набухание ионитов

Набуханием называется процесс постепенного увеличения объема ионита, помещенного в жидкий растворитель, за счет проникновения молекул растворителя вглубь углеводородного каркаса. Чем сильнее набухает ионит, тем быстрее идет обмен ионами.Набуханиехарактеризуетсявесовым набуханием- количеством поглощенной воды на 1 г сухого ионита иликоэффициентом набухания- отношением удельных объемов набухшего ионита и сухого. Нередко, объем смолы в процессе набухания может увеличиться в 10-15 раз. Набухание высокомолекулярной смолы тем больше, чем меньше степень сшивки образующих ее звеньев, то есть чем менее жесткая у нее макромолекулярная сетка. Большинство стандартных ионитов содержит в сополимерах 6-10% дивинилбензола (иногда 20%). При использовании для сшивки вместо дивинилбензола длинноцепочечных агентов получают хорошо проницаемые макросетчатые иониты, на которых ионный обмен идет с большой скоростью. Помимо структуры матрицы на набухание ионита влияет наличие в нем гидрофильных функциональных групп: ионит набухает тем сильнее, чем больше гидрофильных групп. Кроме того, сильнее набухают иониты, содержащие однозарядные противоионы, в отличие от двух- и трехзарядных В концентрированных растворах набухание происходит в меньшей степени, чем в разбавленных. Большинство неорганических ионитов совсем или почти не набухают, хотя и поглощают воду.

Емкость ионитов

Ионообменная способность сорбентов характеризуется их обменной емкостью, зависящей от числа функциональных ионогенных групп в единице массы или объема ионита. Она выражается в миллиэквивалентах на 1 г сухого ионита или в эквивалентах на 1м3ионита и для большинства промышленных ионитов находится в пределах 2-10 мэкв/г.Полная обменная емкость(ПОЕ) – максимальное количество ионов, которое может быть поглощено ионитом при его насыщении. Это постоянная величина для данного ионита, которую можно определить как в статических, так и в динамических условиях.

В статических условиях, при контакте с определенным объемом раствора электролита, определяют полную статическую обменную емкость(ПСОЕ), иравновесную статическую обменную емкость(РСОЕ), которая изменяется в зависимости от факторов, влияющих на равновесие (объем раствора, его состав, концентрация и др.). Равновесие ионит – раствор соответствует равенству их химических потенциалов.

В динамических условиях, при непрерывной фильтрации раствора через определенное количество ионита определяют динамическую обменную емкость– количество ионов, поглощенных ионитом до проскока сорбируемых ионов (ДОЕ),полную динамическую обменную емкостьдо полной отработки ионита (ПДОЕ). Емкость до проскока (рабочая емкость), определяется не только свойствами ионита, а также зависит от состава исходного раствора, скорости его пропускания через слой ионита, от высоты (длины) слоя ионита, степени его регенерации и величины зерен.

Рабочая емкость определяется по выходной кривой рис. 3.5.1

S1– рабочая обменная емкость, S1+S2– полная динамическая обменная емкость.

При осуществлении элюирования в динамических условиях кривая элюирования имеет вид кривой представленной на рис. 3.5.2

Обычно ДОЕ превышает 50% от ПДОЕ для сильнокислых и сильноосновных ионитов и 80% для слабокислых и слабоосновных ионитов. Емкость сильнокислых и сильноосновных ионитов остается практически неизменной в широком диапазоне рН растворов. Емкость же слабокислых и слабоосновных ионитов в значительной степени зависит от рН.

Степень использования обменной емкости ионита зависит от размеров и формы зерен. Обычно размеры зерен находятся в пределах 0,5-1 мм. Форма зерен зависит от способа приготовления ионита. Они могут быть сферическими или иметь неправильную форму. Сферические зерна предпочтительнее – они обеспечивают лучшую гидродинамическую обстановку и большую скорость процесса. Применяют также иониты с цилиндрическими зернами, волокнистые и другие. Чем мельче зерна, тем лучше используется обменная емкость ионита, но при этом в зависимости от применяемой аппаратуры, возрастает или гидравлическое сопротивление слоя сорбента, или унос малых зерен ионита раствором. Уноса можно избежать применяя иониты, содержащие ферромагнитную добавку. Это позволяет удерживать мелкозернистый материал во взвешенном состоянии в зоне – магнитного поля, через которую движется раствор.

Иониты должны обладать механической прочностью и химической устойчивостью, то есть не разрушаться в результате набухания и работы в водных растворах. Кроме того, они должны легко регенерироваться, тем самым сохранять свои активные свойства в течение длительного времени и работать без смены несколько лет.