Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
63-74.docx
Скачиваний:
12
Добавлен:
04.06.2015
Размер:
263.91 Кб
Скачать

69. Когерентные волны света – это волны у которых одинаковая частота и длина волны, сдвиг фазы двух лучей постоянен во времени

Интерференция света в оптике - это явление пространственного перераспределения светового потока, происходящее при наложении двух когерентных волн (если частота одинаковая и постоянная разность фаз, то волны когерентные или монохромные волны с постоянной рвзностью фаз); проявляется возникновением максимумов и минимумов интенсивности.

Интерференция света - условия max и min.

Условие максимума:

Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max).

, где  - pазность фаз складываемых волн.

 

Условие минимума:

Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум.

70. . Интерференция света в тонких пленках. Просветление оптики

Пусть на плоскопараллельную прозрачную пленку (пластинку) с показателем преломления n и толщиной d под углом  падает плоская монохроматическая волна (для простоты рассмотрим один луч).

На поверхности пленки в точке А волна частично отражается (луч 1- ) и частично преломляется (луч АВ). В точке В волна также частично отражается (луч ВС) и частично преломляется (луч 2- ). То же самое происходит в точке С.

Причем преломленная волна (луч 1" ) накладывается на волну непосредственно отраженную от верхней поверхности (луч 1- ). Эти две волны когерентны, если оптическая разность хода  меньше длины когерентности lког, и в этом случае они интерферируют.

Оптическая разность хода двух волн =(AB+BC)n-(AD-/2),

где /2 - потеря полуволны при отражении луча 1- в точке А. Используя закон преломления n1sin= n2sin и учитывая, что в рассматриваемом случае n1=1, n2=n, можно показать, что.(17)

В точке наблюдения на экране будет максимум, если m и минимум, если (2m+1)/2[см.(15),(16)].

Возможность уменьшения вредного отражения света вследствие интерференции в тонких пленках широко используется в современных оптических приборах. Для этого на передние поверхности линз, призм наносят тонкие пленки с показателем преломления n= и толщиной d, которая определяется из условия минимума при интерференции волн, отраженных от границ раздела сред с n1и n и n и n2

2dn=(2m+1)/2, m=0,1,2-(18)

Минимальная толщина пленки соответствует m=0

d=/(4n)

Такая оптика получила название просветленной оптики.

71. Кольца Ньютона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на П(пи), этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.

Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

72. ФРОНТ ВОЛНЫ, контур в пределах электромагнитного поля или материальной среды, все точки которого имеют одинаковые фазы колебаний. Фронт волны, как правило, перпендикулярен направлению распространения волны; он может быть плоским, сферическим или иметь более сложную форму. Каждая точка фронта является источником вторичных волн, которые через короткое время образуют фронт волны на новом месте.

Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 9.1). Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде и интенсивности волн, распространяющихся по разным направл

73. Дифракция света – в узком, но наиболее употребительном смысле – огибание лучами света границы непрозрачных тел (экранов); проникновение света в область геометрической тени. Наиболее рельефно дифракция света проявляется в областях резкого изменения плотности потока лучей: вблизи каустик, фокуса линзы, границ геометрической тени и др. дифракция волн тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.

Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны, и связанных с отклонениями от законов геометрической оптики.

Огибание препятствий звуковыми волнами (дифракция звуковых волн) наблюдается нами постоянно (мы слышим звук за углом дома). Для наблюдения дифракции световых лучей нужны особые условия, это связано с малой длиной световых волн.

Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

Дифракция Фраунгофера на одной щели

Дифракция Фраунгофера (или дифракция плоских световых волн, или дифракция в параллельных лучах) наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию.

Для наблюдения дифракции Фраунгофера необходимо точечный источник поместить в фокусе собирающей линзы, а дифракционную картину можно исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием.

Пусть монохроматическая волна падает нормально плоскости бесконечно длинной узкой щели (),- длина, b - ширина. Разность хода между лучами 1 и 2 в направ­лении φ

Разобьём волновую поверхность на участке щели МN на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой полосы выбирается так, чтобы разность хода от краев этих зон была равна λ/2, т.е. всего на ширине щели уложится зон. Т.к. свет на щель падает нормально, то плоскость щели совпадает с фронтом волны, следовательно, все точки фронта в плоскости щели будут колебаться синфазно. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения.

Число зон Френеля укладывающихся на ширине щели, зависит от угла φ.

Условие минимума при дифракции Френеля:

Если число зон Френеля четное

Или

то в т. Р наблюдается дифракционный минимум.

Условие максимума:

Если число зон Френеля нечетное

то наблюдается дифракционный максимум.

При φ’=0, Δ = 0 в щели укладывается одна зона Френеля и, следо­вательно, в т. Р главный (центральный) максимум нулевого порядка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]