Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Автоматическая сварка под флюсом.doc
Скачиваний:
39
Добавлен:
07.06.2015
Размер:
446.98 Кб
Скачать

Классификация сочетаний проволока-флюс и наплавленный металл шва.

При изготовлении конструкций из углеродистых сталей к сварным соединениям предъявляются требования равнопрочности шва с основным металлом и отсутствия дефектов. Выполнение этих требований обеспечивается в случае применения флюсов общего назначения, предназначенных для сварки углеродистых и некоторых низколегированных сталей. В последние годы интенсивно ведется разработка флюсов для сварки низколегированных сталей повышенной и высокой прочности. Это обусловлено тем, что многие конструкции в настоящее время выполняются не из углеродистых сталей, а из низколегированных. Работы по созданию флюсов для сварки средне- и высоколегированных сталей проводятся пока в небольшом объеме, так как масштабы применения указанных сталей еще сравнительно не велики. По принятой в сварочной технике классификации, легированные стали разделяют на низко-, средне- и высоколегированные. Если содержание каждого из легирующих элементов не превышает 2%, а суммарное их содержание - 5%, то сталь называется низколегированной. При содержании каждого из легирующих элементов в пределах от 2 до 5% и суммарном их содержании не более 10% сталь называется среднелегированной. Высоколегированной называется сталь, в которой содержание одного из легирующих элементов составляет не менее 5%, а сумма легирующих элементов - не менее 10%. В общем случае для сварки углеродистых и низколегированных сталей с временным сопротивлением Rm < 450 МПа целесообразно использовать флюсы типа MS, CS или AR, которые обеспечивают высокую производительность процесса и отличное формирование металла швов. При сварке низколегированных сталей повышенной прочности (Rm > 450 МПа), к металлу швов и сварных соединений которых предъявляют требования по обеспе чению холодостойкости при температурах ниже минус 20 °С, необходимо использовать ней тральные или слабоосновные флюсы (1,0 > В < 2,0) типа CS, AR, AB. Для сталей более высокой прочности, при сварке которых могут возникнуть проблемы с образованием холодных трещин, следует использовать высокоосновные флюсы типа АВ или FB.

Получение качественных швов на углеродистых и некоторых низколегированных конструкционных сталях обеспечивается путем использования следующих сочетаний флюсов и сварочных проволок: плавленый высококремнистый марганцевый флюс и низкоуглероди стая или марганцовистая сварочная проволока, плавленый высококремнистый безмарганцевый флюс и марганцовистая сварочная проволока, керамический флюс и низкоуглеродистая или марганцовистая проволока. При использовании плавленого высококремнистого марганцевого флюса и низкоуглеродистой или марганцовистой сварочной проволоки либо плавленого высококремнистого безмарганцевого флюса и марганцовистой сварочной проволоки последняя должна быть из кипящей или полуспокойной стали. Успокоение металла сварочной ванны и предупреждение пористости при сварке кипящей стали осуществляется в результате введения некоторого количества кремния из флюса в зону сварки. Легирование металла шва марганцем с целью повышения его стойкости против образования кристаллизационных трещин производится через флюс (первое и третье сочетания) или через проволоку (второе и третье сочетания). Сварочные свойства высококремнистых марганцевых флюсов несколько лучше, чем свойства высококремнистых безмарганцевых. Положительной характеристикой высококрем нистых марганцевых флюсов является высокая стойкость сварных швов против образования кристаллизационных трещин. Это обусловливается малым переходом серы из флюсов данного типа в металл шва и сравнительно сильным выгоранием углерода из металла сварочной ванны. Кроме того, на качество шва положительно влияет более низкое по сравнению с марганцовистой проволокой содержание углерода в низкоуглеродистой проволоке, используемой в сочетании с высококремнистыми марганцевыми флюсами. При сварке под ними пористость сварных швов меньше, чем при сварке под высококремнистыми безмарганцевыми флюсами.

Преимуществом высококремнистых безмарганцевых флюсов является лучшая отделимость шлаковой корки с поверхности шва, что обеспечивается в результате меньшего окислительного действия флюса на твердеющий металл шва, вследствие чего образование окисной пленки на поверхности шва происходит медленнее и сцепление шлака с этой поверхностью затрудняется. В швах, сваренных под высококремнистыми безмарганцевыми флюсами, содержится меньше фосфора, потому что в шихте для их выплавки нет марганцевой руды. С точки зрения выделения вредных газов первое и второе сочетания равноценны. Первое сочетание хуже в отношении выделения в атмосферу соединений марганца.

Флюсы для сварки низколегированных сталей должны не только отвечать перечисленным выше общим требованиям, но и способствовать получению металла шва повышенной прочности с высокой ударной вязкостью при низких температурах. Если прочность и химический состав металла шва определяются химическими составами сварочной проволоки и основного металла, то его ударная вязкость в значительной степени зависит от флюса. Вы сокая ударная вязкость металла шва обеспечивается при его мелкокристаллической структуре, низком содержании неизбежных вредных примесей и неметаллических включений. Для выполнения этих требований во флюсе обычно снижают содержание SiO2. Поэтому при сварке низколегированных сталей преимущественно применяются низкокремнистые флюсы. Дополнительным требованием является возможно более низкое содержание водорода в металле шва. Измельчению структуры металла шва способствует также уменьшение погон ной энергии сварки. Однако при этом уменьшается эффективность процесса сварки вследствие увеличения количества проходов.

Ввиду опасности образования кристаллизационных трещин необходимая прочность металла шва при сварке низколегированных высокопрочных сталей достигается путем легирования его марганцем, хромом, никелем, молибденом и ванадием, а не за счет повышения содержания углерода. В процессе сварки современных низколегированных сталей повышенной прочности допускается лишь ограниченный подвод тепла для исключения повреждения структуры основного металла в околошовной зоне. Это требование обеспечивается путем наложения многослойных швов при сварке металла средней и большой толщины. В связи с этим флюсы, предназначенные для сварки таких сталей, должны обеспечивать легкую отделимость шлаковой корки, высокие качество формирования шва и его механические свойства. В результате повышения механических свойств металла шва путем применения соответствующего сочетания флюса и проволоки исключается необходимость наложения неэкономичных тонких швов при многопроходной сварке толстого металла. При этом уменьшается возможность загрязнения шва шлаковыми включениями, образующимися из не удаленного после сварки шлака.

Хотя к свойствам флюсов для сварки среднелегированных сталей предъявляются такие же требования, как и к свойствам флюсов для сварки низколегированных сталей, однако имеется ряд металлургических особенностей, обусловливающих необходимость применения специальных флюсов при сварке среднелегированных сталей. К этим особенностям прежде всего относится более высокая степень легирования металла, вызывающая его большую чувствительность к содержанию неметаллических включений и водорода. Поэтому опасность образования трещин при сварке среднелегированных сталей выше, чем при сварке низколегированных. В процессе сварки среднелегированных сталей труднее обеспечить равнопрочность металла шва с основным металлом, потому что вследствие опасности образования кристаллизационных трещин содержание углерода в шве жестко ограничивается. Поэтому требуются введение в шов со сварочной проволокой дополнительных количеств легирующих элементов и снижение их окисления в процессе сварки. Низкая окислительная способность флюса необходима и для обеспечения легкой отделимости шлака со швов, содержащих ванадий, ниобий или хром.

Применение и типичные проблемы

Форма и размеры шва зависят от многих параметров режима сварки: величины сварочного тока, напряжения дуги, диаметра электродной проволоки, скорости сварки и др. Та кие параметры, как наклон электрода или изделия, величина вылета электрода, грануляция флюса, род тока и полярность и т. п. оказывают меньшее влияние на форму и размеры шва.

Необходимое условие сварки - поддержание дуги. Для этого скорость подачи электрода должна соответствовать скорости его плавления теплотой дуги. С увеличением силы сварочного тока скорость подачи электрода должна увеличиваться. Электродные проволоки меньшего диаметра при равной силе сварочного тока следует подавать с большей скоростью. Условно это можно представить как расплавление одинакового количества электродного металла при равном количестве теплоты, выделяемой в дуге (в действительности количество расплавляемого электродного металла несколько увеличивается с ростом плотности сварочного тока). При некотором уменьшении скорости подачи длина дуги и ее напряжение увеличиваются. В результате уменьшаются доля теплоты, идущая на расплавление электрода, и количество расплавляемого электродного металла.

Влияние параметров режима на форму и размеры шва обычно рассматривают при изменении одного из них и сохранении остальных постоянными. Приводимые ниже закономерности относятся к случаю наплавки на пластину, когда глубина проплавления не превышает 0,7 ее толщины (при большей глубине проплавления ухудшение теплоотвода от нижней части сварочной ванны резко увеличивает глубину проплавления и изменяет форму и размеры шва).

С увеличением силы сварочного тока глубина проплавления возрастает почти линейно до некоторой величины. Это объясняется ростом давления дуги на поверхность сварочной ванны, которым оттесняется расплавленный металл из-под дуги (улучшаются условия теплопередачи от дуги к основному металлу), и увеличением погонной энергии. Ввиду того, что повышается количество расплавляемого электродного металла, увеличивается и высота усиления шва. Ширина шва возрастает незначительно, так как дуга заглубляется в основной металл (находится ниже плоскости основного металла). Увеличение плотности сварочного тока (уменьшение диаметра электрода при постоянном токе) позволяет резко увеличить глубину проплавления. Это объясняется уменьшением подвижности дуги. Ширина шва при этом уменьшается. Путем уменьшения диаметра электродной проволоки можно получить шов с требуемой глубиной проплавления в случае, если величина максимального сварочного тока, обеспечиваемая источником питания дуги, ограничена. Однако при этом уменьшается коэффициент формы провара шва (ф = е/Н) и интенсифицируется зональная ликвация в металле шва, располагающаяся в его рабочем сечении. Род и полярность тока оказывают значительное влияние на форму и размеры шва, что объясняется различным количеством теплоты, выделяющимся на катоде и аноде дуги.

При сварке на постоянном токе прямой полярности глубина проплавления на 40 - 50%, а на переменном - на 15 - 20% меньше, чем при сварке на постоянном токе обратной полярности. Поэтому швы, в которых требуется небольшое количество электродного металла и большая глубина проплавления (стыковые и угловые без разделки кромок), целесообразно выполнять на постоянном токе обратной полярности. При увеличении напряжения дуги (длины дуги) увеличивается ее подвижность и возрастает доля теплоты дуги, расходуемая на расплавление флюса (количество расплавленного флюса). При этом растет ширина шва, а глубина его проплавления остается практически постоянной. Этот параметр режима широко используют в практике для регулирования ширины шва.

Увеличение скорости сварки уменьшает погонную энергию и изменяет толщину прослойки расплавленного металла под дугой. В результате этого основные размеры шва уменьшаются. Однако в некоторых случаях (сварка тонкими проволоками на повышенной плотности сварочного тока) увеличение скорости сварки до некоторой величины, уменьшая прослойку расплавленного металла под дугой и теплопередачу от нее к основному металлу, может привести к росту глубины проплавления. При чрезмерно больших скоростях сварки и силе сварочного тока в швах могут образовываться подрезы.

С увеличением вылета электрода возрастает интенсивность его подогрева, а значит, и скорость его плавления. В результате толщина прослойки расплавленного металла под дугой увеличивается и, как следствие этого, уменьшается глубина проплавления. Этот эффект иногда используют при сварке электродными проволоками диаметром 1 - 3 мм для увеличения количества расплавляемого электродного металла при сварке швов, образуемых в основном за счет добавочного металла (способ сварки с увеличенным вылетом электрода). В некоторых случаях, особенно при автоматической наплавке, электроду сообщают колебания поперек направления шва с различной амплитудой и частотой, что позволяет в широких пределах изменять форму и размеры шва. При сварке с поперечными колебаниями электрода глубина проплавления и высота усиления уменьшаются, а ширина шва увеличивается и обычно несколько больше амплитуды колебаний. Этот способ удобен для предупреждения прожогов при сварке стыковых соединений с повышенным зазором в стыке или уменьшенным притуплением кромок. Подобный же эффект наблюдается при сварке сдвоенным электродом, когда электроды расположены поперек направления сварки. При их последователь ном расположении глубина проплавления, наоборот, возрастает.

Состав и строение частиц флюса оказывают заметное влияние на форму и размеры шва. При уменьшении насыпной массы флюса (пемзовидные флюсы) повышается газопроницаемость сдоя флюса над сварочной ванной и, как результат этого, уменьшается давление в газовом пузыре дуги. Это приводит к увеличению толщины прослойки расплавленного металла под дугой, а значит, и к уменьшению глубины проплавления. Флюсы с низкими стабилизирующими свойствами, как правило, способствуют более глубокому проплавлению. Пространственное положение электрода и изделия при сварке под флюсом оказывает такое же влияние на форму и размеры шва, как и при ручной сварке. Для предупреждения отекания расплавленного флюса, ввиду его высокой жидкотекучести, сварка этим способом возможна только в нижнем положении при наклоне изделия на угол не более 10 -15°. Изменение формы и размеров шва наклоном изделия находит практическое применение только при сварке кольцевых стыков труб ввиду сложности установки листовых конструкций в на клонное положение. Сварка с наклоном электрода находит применение для повышения скорости многодуговой сварки. Подогрев основного металла до температуры 100 °С и выше приводит к увеличению глубины провара и ширины шва.

Перед началом автоматической сварки следует проверить чистоту кромок и правильность их сборки и направления электрода по оси шва. Металл повышенной толщины сваривают многопроходными швами с необходимым смещением электрода с оси шва. Перед наложением последующего шва поверхность предыдущего тщательно зачищают от шлака и осматривают с целью выявления наличия в нем наружных дефектов.

В начале сварки, когда основной металл еще не прогрелся, глубина его проплавления уменьшена, в связи с чем эту часть шва обычно выводят на входную планку. По окончании сварки в месте кратера образуется ослабленный шов, поэтому процесс сварки заканчивают на выводной планке. Входную и выводную планки шириной до 150 мм и длиной (в зависимости от режима и толщины металла) до 250 мм закрепляют на прихватках до начала сварки. После сварки планки удаляют.

При автоматической сварке стыковых соединений на весу. Практически сложно получить шов с проваром по всей длине стыка из-за вытекания в зазор между кромками расплавленного металла и флюса и, как результат, - образования прожогов. Для предупреждения этого применяют различные приемы, способствующие формированию корня шва. Сварку односторонних швов можно выполнять по предварительной ручной подварке, если невозможна автоматическая. Односторонняя сварка на остающейся стальной подкладке возможна в тех случаях, когда допустимо ее применение с эксплуатационной точки зрения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]