Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 3 Режимы работы ЭД в ЭП.docx
Скачиваний:
59
Добавлен:
10.06.2015
Размер:
217.05 Кб
Скачать

1.3. Реостатный пуск

Схема реостатного пуска изображена на рис. 9.2.

Рис. 9.2. Реостатный пуск двигателя: а – схема пуска; б – пусковая диаграмма

При пуске замыкаются контакты К1 и К2, контакт К3 разомкнут. Через контакты К1 и К2 на обмотку якоря «А» и параллельную обмотку возбуждения «L» подается пита-ние сети, а через разомкнутый контакт КМ3 в цепь обмотки якоря вводится пусковой резистор R, поэтому полное сопротивление обмотки якоря увеличивается .

На практике для ручного пуска применяют пусковые реостаты ( отсюда название этого способа – реостатный ), имеющие несколько ступеней.

2) Скорость

2. Способы регулирования частоты вращения электродвигателей постоян-ного тока

2.1. Основные сведения

Рассмотрим способы регулирования частоты вращения электродвигателей постоян-ного тока на примере электродвигателя с независимым ( параллельным ) возбуждением.

Три способами:

1. изменением напряжения на обмотке якоря двигателя U;

2 изменением сопротивления цепи обмотки якоря R;

3. изменением магнитного потока полюсов Ф.

Первый способ регулирования – изменением напряжения на обмотке якоря, применяется только для двигателей с независимым возбуждением в т.н. «системах генератор – двигатель» ( см. ниже ).

Второй способ – изменением сопротивления цепи обмотки якоря, на практике осуществляется путем введения добавочных резисторов последовательно с обмоткой якоря.

Этот способ применяется в электроприводах грузоподъемных механизмов и якор-но-швартовных устройств на постоянном токе.

Третий способ – изменением магнитного потока полюсов, на практике осуществля-ется путем введения добавочных резисторов последовательно с параллельной обмоткой возбуждения. При этом магнитный поток возбуждения уменьшается, а скорость якоря увеличивается.

Этот способ регулирования применяется в электроприводах грузоподъем-ных механизмов и якорно-швартовных устройств для получения высоких скоростей при перемещения холостого гака ( грузовые лебедки и краны ) или швартовного каната ( бра-шпили, шпили ), т.е. при небольшой нагрузке на валу электродвигателя.

3) Торможение

3. Электрическое торможение двигателей постоянного тока

3.1. Основные сведения

В электроприводах различают механическое и электрическое торможение.

Под механическим понимают торможение электропривода при помощи тормозных устройств, принцип действия которых основан на использовании трения.

Механическое торможение обеспечивает полную остановку электропривода и его фиксацию в заторможенном состоянии. Этот вид торможения применяется в судовых элек-троприводах, работа которых связана с преодолением действия силы тяжести – грузоподъ-ёмных и якорно-швартовных.

Под электрическим торможением понимают создание на валу электродвигателя электромагнитного момента, направленного навстречу вращению якоря ( ротора ). Для электрического торможения применяют специальные узлы в схемах управления электро-приводами.

Как правило, электрическое торможение применяют не для полной остановки элект-ропривода, а для предварительного уменьшения скорости до такой, при которой можно на-чинать механическое торможение.

Электрическое торможение применяют, в основном , в электроприводах судовых грузоподъемных механизмов, работающих с частыми пусками и остановками.

Различают 4 вида электрического торможения:

  1. динамическое;

  2. рекуперативное;

  3. торможение противовключением при активном статическом моменте;

  4. торможение противовключением при реактивном статическом моменте.

На судах из перечисленных видов торможения, в основном, применяется динамическое и рекуперативное.