Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NadezhnostLK.doc
Скачиваний:
194
Добавлен:
11.06.2015
Размер:
1.07 Mб
Скачать

Законы распределения случайны хвеличин

Существует большое количество законов распределения случайных ве-личин, описываемых в специальной литературе. Мы рассмотрим наиболее часто встречающиеся в инженерных расчетах надежности - показательное распределение и распределение Вейбулла.

Экспоненциальный (показательный) закон

Этот закон достаточно часто используется для описания ВБР не восста-навливаемых изделий. Это однопараметрический закон. Если отказы иссле-дуемого изделия подчиняются этому закону, то для данного изделия в дан-ных условиях эксплуатации λ имеет постоянное значение (λ = const), т.е. в равные промежутки наработки число отказавших изделий не зависит от того, сколько времени проработало изделие до рассматриваемого момента времени. Как правило, этим законом описываются внезапные отказы изделий.

Экспоненциальное распределение описывает наработку до отказа объектов, у которых в результате сдаточных испытаний (выходного контроля) отсутствует период приработки, а назначенный ресурс установлен до окончания периода нормальной эксплуатации.

Эти объекты можно отнести к «не стареющим», поскольку они работают только на участке с (t) == const. Круг таких объектов широк: сложные технические системы с множеством компонентов, средства вычислительной техники и системы автоматического регулирования и т. п. Экспоненциальное распределение широко применяется для оценки надежности энергетических объектов.

Считается, что случайная величина наработки объекта до отказа подчинена экспоненциальному распределению, если ПРО описывается выражением:

 

f(t) = λexp( - λt),

(1)

 

гдеλ– параметр распределения, который по результатам испытаний принимается равным

 

λ1 /0 ,

                                                                 

где 0 – оценка средней наработки до отказа.

ВБР определяется согласно выражения: Р(t) = e λ t

Частота отказов α(t) = λ e-λ t

Средняя наработка до первого отказа tср = 1 ⁄ λ

Интенсивность отказов (среднее число событий в единицу времени) λ = const

Графики изменения показателей безотказности при экспоненциальном распределении приведены на рис. 1.

 

 

Рис. 1

Следует отметить, что при t < < 1, т. е. при наработке t много меньшей, чем средняя наработка T0, выражения (1) – (4) можно упростить, заменив e-t двумя первыми членами разложения e-t в степенной ряд.

Например, выражение для ВБР примет вид:

Р(t)=1-λt+(λt)2/2!-(λt)3/3!+…≈1- λt

 

 

при этом погрешность вычисления P(t) не превышает 0,5 (t)2.

Все рассмотренные далее законы распределения наработки до отказа используются на практике для описания надежности «стареющих» объектов, подверженных износовым отказам.

Закон Вейбулла

Это распределение чаще всего используется для исследования интен­сивности отказов для периодов приработки и старения. На примере распре­деления сроков службы изоляции некоторых элементов электрической сети подробно рассмотрены физические процессы, приводящие к старению и отказу изоляции и описываемые распределением Вейбулла.

Надежность наиболее распространенных элементов электрических се­тей, таких, как силовые трансформаторы, кабельные линии, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Основной характеристикой изоляции электромеханических изделий является ее электрическая прочность, которая в зависимости от условий эксплуатации и вида изделия определяется меха­нической прочностью, эластичностью, исключающей возможности образова­ния остаточных деформаций, трещин, расслоений под воздействием механи­ческих нагрузок, т.е. неоднородностей.

Среди перечисленных факторов, определяющих срок службы изоляции указанных элементов электрических сетей, одним из основных факторов, наи­более изученных теоретически и проверенных экспериментально, является тепловое старение. На основании экспериментальных исследований было по­лучено известное «восьмиградусное» правило, согласно которому повышение температуры изоляции, выполненной на органической основе, на каждые во­семь градусов в среднем вдвое сокращается срок службы изоляции.

В настоящее время в зависимости от класса применяемой изоляции ис­пользуются шести-, восьми-, десяти- и двенадцатиградусное правила. Срок службы изоляции в зависимости от температуры нагревания

ТИ = Ае- γθ,

где А - срок службы изоляции при θ = 0 - некоторая условная величина; γ - коэффициент, характеризующий степень старения изоляции в зависимо­сти от класса; θ - температура перегрева изоляции.

Если случайная величина распределена по законуВейбулла, то

ВБР Р(t) = e^- λ0tk

Частота отказов α(t) = λ0 ktk-1 e^- λ0tk

Интенсивность отказов λ = λ0 ktk-1

Средняя наработка до первого отказа tcp=Г(1/k+1)/ λ01/k

где Г(х) – гамма функция «х», значения которой табулированы.

Параметр «К» оказывает влияние на форму кривых и называется параметром формы.

Параметр λ0- параметр маштаба, который характеризует растянутость кривых вдоль оси абсцисс. При К=1, имеет место показательный закон. При λ0= 2.5- 3.5 распределение Вейбулла приближается к нормальному. Этим объясняется гибкость закона Вейбулла и широкое его применение. Этим законом описываются процесс возникновения внезапных отказов, когда параметр «К» близок к единице, и постепенных (износовых) отказов, когда распределение становится близко к нормальному, а также тогда, когда совместно действуют причины, вызывающие оба этих отказа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]