Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gidrodinamika-Ch1_38s.doc
Скачиваний:
165
Добавлен:
12.01.2016
Размер:
1.58 Mб
Скачать

2.4. Геометрический и энергетический смысл уравнения д.Бернулли

Все члены, входящие в уравнение Д.Бернулли, имеют линейную размерность, поэтому их принято называть высотами. Соответственно общеприняты следующие названия для этих членов:

- геометрическая или геодезическая высота;

- пьезометрическая высота или высота давления;

- скоростная высота или скоростной напор.

Легко усмотреть следующий геометрический смысл уравнения Д.Бернулли, который заключается в том, что при установившемся движении идеальной жидкости сумма трех высот (геометрической, пьезометрической и скоростной) не меняется вдоль данной элементарной струйки. Это положение наглядно иллюстрируется II.01.

Можно трактовать смысл отдельных членов уравнения Бернулли иначе. Выше было показано, что сумма представляет собой удельную энергию жидкости. В соответствии с этим можно считать, что:

- есть удельная энергия положения;

- есть удельная энергия давления;

- есть удельная кинетическая энергия.

Энергетический смысл уравнения Бернулли заключается в том, что при установившемся движении идеальной жидкости сумма удельных энергий положения, давления и кинетической не меняется вдоль данной элементарной струйки.

Очевидно, двучлен представляет собойудельную потенциальную кинетическую энергию движущейся частицы жидкости. Полная удельная энергия (т.е. потенциальная + кинетическая) называется гидродинамическим напором и обозначается . Таким образом, уравнение Бернулли показывает, что при установившемся движении идеальной жидкости для данной струйки гидродинамический напор есть величина постоянная.

Рис. II.01

На графике линия гидродинамического напора изображается горизонтальной линией.

2.5. Уравнение д.Бернулли для элементарной струйки реальной жидкости. Пьезометрический и гидравлический уклоны

При движении реальной жидкости между соседними струйками возникают силы трения, на преодоление которых затрачивается часть энергии жидкости. Поэтому удельная энергия жидкости в сечении элементарной струйки 2-2 будет мене удельной энергии жидкости в сечении 1-1 на некоторую величину , которую называют потерянной высотой или потерянной удельной энергией, затрачиваемой на преодоление гидравлических сопротивлений. Аналитически это положение запишется таким образом:

(11.14)

Следовательно, при установившемся движении реальной жидкости сумма четырех высот (геометрической, пьезометрической, скоростной и потерянной) или, что то же самое, сумма четырех удельных энергий 9положения, давления, кинетической и потерянной) не изменяется вдоль данной элементарной струйки.

Легко изобразить уравнение Бернулли для рассматриваемого случая графически. Для этого следует, выбрав произвольную горизонтальную плоскость сравнения, отложить на ней в каждом сечении высоты ;;и. Концы отрезков, соединенные плавной кривой, покажут положение оси струйки. Соединяя концы отрезковплавной кривой, получим так называемую пьезометрическую линию. Отложив в каждом сечении вверх от пьезометрической линии отрезки, равные скоростным напорам, и соединив их концы плавной кривой, получим линию гидродинамического напора или, как ее часто называют, гидравлическую линию (рис.II.02). Отрезки, равные расстояниям по вертикали от гидравлической линии, проходящей над плоскостью сравнения на высоте, равной начальной удельной энергии на гидравлические сопротивления на участке от начального до рассматриваемого сечения.

Рис. II.02

Проделаем теперь следующее построение: разверзнем криволинейную ось струйки s в горизонтальную прямую линию и в каждой ее точке отложим по вертикали значения удельных энергий ;и. Соединяя концы отрезкови , получим изображение пьезометрической и гидравлической линий. Падение пьезометрической линии на единицу длины элементарной струйки назовем пьезометрическим уклоном:

. (11.15)

Соответственно падение гидравлической линии на единицу длины элементарной струйки назовем гидравлическим уклоном I:

(11.16)

На графике (рис. II.03) пьезометрический уклон представляется тангенсом угла наклона касательной к пьезометрической линии, а гидравлический уклон – тангенсом угла наклона касательной к гидравлической линии. Значение пьезометрического уклона может быть положительным или отрицательным в зависимости от того, увеличивается или уменьшается величина удельной потенциальной энергии вдоль элементарной струйки.

Рис. II.03

Гидравлиеческий уклон есть всегда величина положительная, так как полная удельная энергия движущейся части жидкости постепенно уменьшается по мере ее продвижения вдоль элементарной струйки, затрачиваясь на преодоление сил трения, превращаясь в тепловую энергию и рассеиваясь.

Соседние файлы в предмете Гидрогазодинамика