Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по КСМ.docx
Скачиваний:
12
Добавлен:
12.02.2016
Размер:
374.9 Кб
Скачать
  1. Комунікаці́йна мере́жа — система фізичних каналів зв'язку і комутаційного устаткування, що реалізовує той або інший низькорівневий протокол передачі даних.

Існують провідні, безпровідні (використовуючі радіохвилі) і волоконно-оптичні канали зв'язку. За типом сигналу виділяють цифрові і аналогові мережі. Призначенням комунікаційних мереж є передача даних з мінімальною кількістю помилок і спотворень. На основі комунікаційної мережі може будуватися інформаційна мережа, наприклад на основі мереж Ethernetяк правило будуються мережі TCP/IP, які у свою чергу утворюють глобальну мережу Інтернет. Прикладами комунікаційних мереж є:

  • комп'ютерні мережі,

  • телефонні мережі,

  • мережі стільникового зв'язку,

  • мережі кабельного телебачення.

Комунікаційна мережа описується сукупністю вузлів та каналів зв'язку, які їх сполучають. Вузли мереж забезпечують опрацювання та збереження даних, також їхні комутації.

Комп'ю́терна мере́жа — система зв'язку між двома чи більше комп'ютерами. У ширшому розумінні комп'ютерна мережа (КМ) — це система зв'язку через кабельне чи повітрянесередовище, самі комп'ютери різного функціонального призначення і мережеве обладнання.

Класифікація за областю дії [ред.]

Класифікація комунікаційних мереж за областю дії враховує географічний район, охоплений мережею та, в меншому ступені, розмір мережі. Виділяються типи:

  • персональна мережа (Personal Area Networks - PAN)

  • локальні мережі (Local Area Networks — LAN)

  • кампусні мережі (Campus Area Network)

  • глобальні мережі (Wide Area Networks — WAN)

Класифікація за топологією [ред.]

Комунікаційні мережі можуть класифікуватися також за топологією з'єднання пристроїв. Базовими є такі топології:

  • шинна

  • кільце

  • зірка

  • комбінована

Інформацíйна систéма (англ. Information system) — сукупність організаційних і технічних засобів для збереження та обробки інформації з метою забезпечення інформаційних потреб користувачів.

Таке визначення може бути задовільним тільки при найбільш узагальненій і неформальній точці зору і підлягає подальшому уточненню. Інформаційні системи діють в Україні під назвою «автоматизовані системи (АС)».

  1. Під топологією (компонуванням, конфігурацією, структурою) комп'ютерної мережі зазвичай розуміється фізичне розташування комп ’ ютерів мережі один щодо одного і спосіб з'єднання їх лініями зв'язку.

Топологія визначає вимоги до обладнання, тип використовуваного кабелю, можливі і найбільш зручні методи управління обміном, надійність роботи, можливості розширення мережі.

Існує три основні топологія мережі:

1. Мережева топологія шина (bus), при якій всі комп'ютери паралельно підключаються до однієї лінії зв'язку і інформація від кожного комп'ютера одночасно передається всім іншим комп'ютерам (мал. 1);

2. Мережева топологія зірка (star), при якій до одного центрального комп'ютера приєднуються інші периферійні комп'ютери, причому кожен з них використовує свою окрему лінію зв'язку (мал. 2);

3. Мережева топологія кільце(ring), при якій кожен комп'ютер передає інформацію завжди тільки одного комп'ютера, наступного ланцюжку, а отримує інформацію тільки від попереднього комп'ютера в ланцюжку, і цей ланцюжок замкнута в «кільце» (мал. 3).

4-7………….Фізичний рівень

Фізичний рівень (Physical layer) має справи з передачею бітів по фізичних каналах зв'язку, таким, як коаксіальний кабель, кручена пара, оптоволоконий кабель або цифровий територіальний канал. До цього рівня мають відношення характеристики фізичних середовищ передачі даних, такі як смуга пропускання, перешкодозахищеність, хвильовий опір і інші. На цьому ж рівні визначаються характеристики електричних сигналів, що передають дискретну інформацію, таку як крутість фронтів імпульсів, рівні напруги або струму переданого сигналу, тип кодування, швидкість передачі сигналів. Крім того, тут стандартизуються типи роз’ємів і призначення кожного контакту.

Функції фізичного рівня:

  • передача бітів по фізичних каналах;

  • формування електричних сигналів;

  • кодування інформації;

  • синхронізація;

  • модуляція.

Реалізується апаратно.

Функції фізичного рівня реалізуються у всіх пристроях, підключених до мережі. З боку комп'ютера функції фізичного рівня виконуються мережним адаптером або послідовним портом.

Прикладом протоколу фізичного рівня може служити специфікація 100Base-TX технології Ethernet, що визначає в якості середовища передачі даних неекрановану кручену пару категорії 5 із хвильовим опором 100 Ом, роз’єм RJ-45, максимальну довжину фізичного  сегмента 100 метрів, а також деякі інші характеристики середовища й електричних сигналів.

Канальний рівень

На фізичному рівні просто пересилаються бітиПри цьому не враховується, що в тих мережах, у яких лінії зв'язку використовуються (розділяються) поперемінно декількома парами взаємодіючих комп'ютерів, фізичне середовище передачі може бути зайняте.

Тому однієї із завдань канального рівня (Data Link layer) є перевірка доступності середовища передачі. Інше завданняканального рівня - реалізація механізмів виявлення й корекції помилок. Для цього на канальному рівні  біти групуються в набори, називані кадрами (frames).

Канальний рівень забезпечує коректність передачі кожного кадру поміщаючи спеціальну послідовність біт у початок і кінець кожного кадру, для його виділення, а також обчислює контрольну суму, обробляючи всі байти кадру певним способом, і додає контрольну суму до кадру. Канальний рівень може не тільки виявляти помилки, але й виправляти їх за рахунок повторної передачі ушкоджених кадрів. Необхідно відзначити, що функція виправлення помилок для канального рівня не є обов'язкової, тому в деяких протоколах цього рівня вона відсутня, наприклад в Ethernet і Frame Relay.

Реалізується апаратно.

Мережний рівень

Мережний рівень (Network layer) служить для утворення єдиної транспортної системи, що поєднує кілька мереж, причому ці мережі можуть використовувати зовсім різні принципи передачі повідомлень між кінцевими вузлами й мати довільну структуру зв'язків. Функції мережного рівня досить різноманітні.

На мережному рівні сам термін мережа наділяють специфічним значенням. У цьому випадку під мережею розуміється сукупність комп'ютерів, з'єднаних між собою відповідно до однієї зі стандартних типових топологій і , що використовують для передачі даних один із протоколів канального рівня, певний для цієї топології.

Повідомлення мережного рівня прийнято називати пакетами (packets). При організації доставки пакетів на мережному рівні використовується поняття «номер мережі». У цьому випадку адреса одержувача складається зі старшої частини - номера мережі й молодшої - номера вузла в цій мережі. Всі вузли однієї мережі повинні мати ту саму старшу частину адреси, тому терміну «мережа» на мережному рівні можна дати й інше, більше формальне визначення: мережа - це сукупність вузлів, мережна адреса яких містить той самий номер мережі.

На мережному рівні визначаються два види протоколів:

1.     мережні протоколи (routed protocols) - реалізують просування пакетів через мережу. Саме ці протоколи звичайно мають на увазі, коли говорять про протоколи мережного рівня. Однак часто до мережного рівня відносять і інший вид протоколів, називаних протоколами обміну маршрутною інформацією або просто протоколами маршрутизації (routing protocols).

2.     протоколи вирішення адрес - Address Resolution Protocol, ARP, які відповідають за відображення адреси вузла, використовуваного на мережному рівні, у локальну адресу мережі.

Прикладами протоколів мережного рівня є протокол міжмережної взаємодії IP стека TCP/IP і протокол межмережевого обміну пакетами IPX стека Novell.

Транспортний рівень

Транспортний рівень (Transport layer) забезпечує додаткам або верхнім рівням стека - прикладному й сеансовому - передачу даних з тим ступенем надійності, що їм потрібно. Модель OSI визначає п'ять класів сервісу, надаваних транспортним рівнем. Ці види сервісу відрізняються якістю надаваних послуг: терміновістю, можливістю відновлення перерваного зв'язку, наявністю засобів націлити декількох з'єднань між різними прикладними протоколами через загальний транспортний протокол, а головне - здатністю до виявлення й виправлення помилок передачі, таких як перекручування, втрата й дублювання пакетів.

Основні завдання транспортного рівня:

  1. розбивка повідомлення сеансового рівня на пакети, їхня нумерація;

  2. буферизація прийнятих пакетів;

  3. впорядочення пакетів, що прибувають;

  4. адресація прикладних процесів;

  5. керування потоком.

Як правило, всі протоколи, починаючи із транспортного рівня й вище, реалізуються програмними засобами кінцевих вузлів мережі - компонентами їх мережних операційних систем. Як приклад транспортних протоколів можна привести протоколи TCP іUDP стека TCP/IP і протокол SPX стека Novell.

Сеансовий рівень

Сеансовий рівень (Session layer) забезпечує керування діалогом: фіксує, яка зі сторін є активною в даний момент, надає засоби синхронізації. Останні дозволяють вставляти контрольні точки в довгі передачі, щоб у випадку відмови можна було повернутися назад до останньої контрольної точки, а не починати все спочатку. На практиці деякі додатки використовують сеансовий рівень, і він рідко реалізується у вигляді окремих протоколів, хоча функції цього рівня часто поєднують із функціями прикладного рівня й реалізують в одному протоколі.

Основні завдання сеансового рівня:

1. встановлення способу обміну повідомленнями (дуплексний або напівдуплексний);

2. синхронізація обміну повідомленнями;

3. організація "контрольних точок" діалогу.

Представницький рівень

Представницький рівень (Presentation layer) має справу з формою подання переданої по мережі інформації, не міняючи при цьому її змісту. За рахунок рівня подання інформація, передана прикладним рівнем однієї системи, завжди зрозуміла прикладному рівню іншої системи. За допомогою засобів даного рівня протоколи прикладних рівнів можуть перебороти синтаксичні розходження в поданні даних або ж розходження в кодах символів, наприклад кодів ASCII і EBCDIC. На цьому рівні може виконуватися шифрування й дешифрування даних, завдяки якому таємність обміну даними забезпечується відразу для всіх прикладних служб. Прикладом такого протоколу є протокол Secure Socket Layer (SSL), що забезпечує секретний обмін повідомленнями для протоколів прикладного рівня стека TCP/IP.

Основні завдання представницького рівня:

  1. перетворення даних із зовнішнього формату у внутрішній;

  2. шифрування й розшифровка даних.

Прикладний рівень

Прикладний рівень (Application layer) - це в дійсності просто набір різноманітних протоколів, за допомогою яких користувачі мережі одержують доступ ресурсів, що розділяються, таким як файли, принтери або гіпертекстові Web-сторінки, а також організують свою спільну роботу, наприклад, за допомогою протоколу електронної пошти. Одиниця даних, який оперує прикладний рівень, звичайно називається повідомленням (message).

Основні завдання прикладного  рівня:

  1. ідентифікація, перевірка прав доступу;

  2. принт- і файл-сервіс, пошта, вилучений доступ і т.д.

Крім моделі OSI, існує також модель IEEE Project 802, прийнята в лютому 1980 року (звідси й число 802 у назві), яку можна розглядати як модифікацію, розвиток, уточнення моделі OSI. Стандарти, обумовлені цією моделлю (так звані 802-специфікації), діляться на дванадцять категорій, кожної з яких привласнений свій номер.

  • 802.1 - об'єднання мереж.

  • 802.2 - керування логічним зв'язком.

  • 802.3 - локальна мережа з методом доступу CSMA/CD і топологією «шина» (Ethernet).

  • 802.4 - локальна мережа з топологією «шина» і маркерним доступом.

  • 802.5 - локальна мережа з топологією «кільце» і маркерним доступом.

  • 802.6 - міська мережа (Metropolitan Area NetworkMAN).

  • 802.7 - широкомовна технологія.

  • 802.8 - оптоволоконна технологія.

  • 802.9 - інтегровані мережі з можливістю передачі мови й даних.

  • 802.10 - безпека мереж.

  • 802.11 - бездротова мережа.

  • 802.12 - локальна мережа із централізованим керуванням доступом по пріоритетах запитів і топологією «зірка» (100VG-AnyLAN).

8. Адресація комп'ютерів.

На відміну від фізичних MAC–адрес, формат яких залежить від конкретної мережної архітектури, IP–адреса будь–якого вузла мережі є чотирибайтовим числом. Записуються IP–адреси чотирма числами в діапазоні від 0 до 255, які представляються в двійковій, вісімковій, десятковій або шістнадцятковій системах числення та розділяються крапками (наприклад 192.168.40.250). Для більш ефективного використання єдиного адресного простору Internet введено класи мереж:

  • Мережі класу A ( 1–126) мають 0 в старшому біті адрес. На мережну адресу відводиться 7 молодших бітів першого байта, на гост–частину – 3 байти. Таких мереж може бути 126 з 16 мільйонами вузлів у кожній.

  • Мережі класу B (128–191) мають 10 у двох старших бітах адрес. На мережну адресу відводиться 6 молодших бітів першого байта та другий байт, на гост–частину – 2 байти. Таких мереж може бути близько 16 тисяч з 65 тисячами вузлів в кожній.

  • Мережі класу C (192–223) мають 110 у трьох старших бітах адрес. На мережну адресу відводиться 5 молодших бітів першого байта та другий і третій байт, на гост–частину – 1 байт. Таких мереж може бути близько 2 мільйонів з 254 вузлами в кожній.

  • Мережі класу D (224–239) мають 1110 у чотирьох старших бітах адрес. Решта біт є спеціальною груповою адресою. Адреси класу D використовуються у процесі звернення до груп комп'ютерів.

  • Мережі класу E (240–255) зарезервовані на майбутнє.

Схеми адресації вузлів

Апаратна адреса(hardware). Ці адреси призначені для мережі невеликого або середнього розміру, тому вони не мають ієрархічної структури. Така адреса звичайно використовується тільки апаратурою, наприклад, у мережні адаптери вбудовують шестибайтну, так звану МАС-адресу, під час виготовлення. При установці у комп'ютер декількох адаптерів, він матиме декілька апаратних адрес. Отже апаратна адреса адресує певний інтерфейс підключення до мережі, яка змінюється при заміні мережного адаптера.

Символьні адреси або імена. Ці адреси призначені для запам'ятовування людьми і тому звичайно несуть змістове навантаження. Символьні імена легко використовувати як у невеликих, так і у великих мережах. Для роботи у великих мережах символьне ім'я може мати складну ієрархічну структуру, напрклад, www.cisco.com.

Числові адреси(складені). Символьні імена зручні для людей, але з-за змінного формату і потенціально великої довжини їх передача по мережі не дуже економна. Тому у багатьох випадках для роботи у великих мережах в якості адрес вузлів використовують числові складені адреси фіксованого і компактного форматів. Типовими представниками адрес цього типу є ІР- та ІРХ-адреси. В них підтримується двохрівнева ієрархія, адреса поділяється на старшу частину - номер мережі та молодшу - номер вузла. Такий поділ дозволяє передавати повідомлення між мережами тільки на підставі номера мережі, а номер вузла використовується тільки після доставки повідомлення у потрібну мережу. В останній час, щоб зробити маршрутизацію у крупних мережах більш ефективною, пропонується більш складні варіанти числової адресації, у відповідності з якими адреса має три і більше складових. Такий підхід реалізований у новій версії протоколу IPv6, призначеного для роботи у мережі Internet.

9-11.  Продуктивність.

Існує кілька основних характеристик продуктивності мережі:

1.     час реакції;

2.     пропускна здатність;

3.     затримка передачі.

Час реакції визначається як інтервал часу між виникненням запиту користувача до якої-небудь мережної служби й одержанням відповіді на цей запит.

Очевидно, що значення цього показника залежить від типу служби, до якої звертається користувач, від того, який користувач і до якого сервера звертається, а також від поточного стану елементів мережі – завантаженості сегментів, комутаторів і маршрутизаторів, через які проходить запит, завантаженості сервера й т.п.

 

Пропускна здатність відбиває обсяг даних, переданих мережею або її частиною в одиницю часу.

Пропускна здатність виміряється або в бітах у секунду, або в пакетах у секунду. Пропускна здатність може бути миттєвої, максимальної й середньої.

Середня пропускна здатність обчислюється шляхом розподілу загального обсягу переданих даних на час їхньої передачі, причому вибирається досить тривалий проміжок часу – година, день або тиждень.

Миттєва пропускна здатність відрізняється від середньої тем, що для усереднення вибирається дуже маленький проміжок часу – наприклад, 10 мс або 1 с.

Максимальна пропускна здатність – це найбільша миттєва пропускна здатність, зафіксована протягом періоду спостереження.

Затримка передачі визначається як затримка між моментом надходження пакета на вхід якого-небудь мережного пристрою або частини мережі й моментом появи його на виході цього пристрою. Цей параметр продуктивності за змістом близький до реакції мережі, але відрізняється тим, що завжди характеризує тільки мережні етапи обробки даних, без затримок обробки комп’ютерами мережі.

Пропускна здатність і затримки передачі є незалежними параметрами, так що мережа може володіти, наприклад, високою пропускною здатністю, але вносити значні затримки при передачі кожного пакета.