Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1-20

.pdf
Скачиваний:
11
Добавлен:
18.02.2016
Размер:
726.56 Кб
Скачать

1. Система электроснабжения автомобилей

Она состоит из источников тока — аккумуляторной батареи и генераторной установки Система электроснабжения автомобилей состоит из электрического генератора, регулятора напряжения и элементов их защиты от возможных аварийных режимов, а также контроля работоспособности. Генератор с регулятором напряжения образуют генераторную установку. Генераторные установки выпускаются на номинальные напряжения 14 и 28 В. Напряжение 28 В характерно для автомобилей с дизелем

Система электроснабжения автомобиля автономна. Следовательно, система электроснабжения автомобиля должна вырабатывать количество электрической энергии, полностью, покрывающее ее расходование на питание системы освещения, системы зажигания, системы пуска и прочих потребителей. Расход электрической энергии, накопленной в аккумуляторной батарее, имеющий место при некоторых эксплуатационных режимах ( пуск, холостой ход и работа двигателя при малой частоте вращения коленчатого вала), должен быть возмещен во время работы автомобиля в других режимах. Другими словами, система электроснабжения должна обеспечивать на автомобиле положительный зарядный баланс. Основой для расчета зарядного баланса является токоскоростная характеристика системы электроснабжения. Токоскоростная характеристика представляет собой зависимость максимально отдаваемого тока от частоты вращения генератора при напряжении 12 5 или 14 В для 12-вольтовых систем и 25 или 28 В для 24-вольтовых. [2]

Система электроснабжения автомобиля обеспечивает электроэнергией потребители при работе их в широких скоростных и нагрузочных диапазонах. [3]

Система электроснабжения автомобиля состоит из генератора и аккумуляторной батареи. Без аккумуляторной батареи езда на автомобиле невозможна, так как нельзя запустить двигатель. [4]

Всистему электроснабжения автомобиля входит генератор и защитное, регулирующее устройство к нему - реле-регулятор. При установке генератора переменного тока часто вместо реле-регулятора применяется только регулятор напряжения без каких-либо защитных реле. Регулятор поддерживает заданный уровень напряжения генератора при значительных изменениях нагрузки и частоты вращения ротора генератора. В отличие от стационарных систем электроснабжения частота вращения ротора автомобильного генератора изменяется в чрезвычайно широких пределах: от 750 - 1000 об / мин в режиме холостого хода до 8000 - 11000 об / мин на легковых и 4000 - 6000 об / мин на грузовых автомобилях при максимальной скорости движения. Любая частота вращения генератора может сочетаться с любым значением нагрузки от минимума до максимума. [5]

Всистемах электроснабжения автомобилей продолжительность проводящих интервалов выпрямителя в режиме микроциклирования практически не зависит от значений сопротивления аккумуляторных батарей и нагрузки - продолжительность проводящего интервала всецело определяется отношением между ЭДС аккумуляторных батарей и ЭДС генераторной установки. [6]

Положительные качества генератора как элемента системы электроснабжения автомобиля в полной мере проявляются лишь тогда, когда все другие элементы этой системы, в частности регу - лятор напряжения, отличаются надежностью, стабильностью работы, экономичностью и другими качествами. Поэтому разработке регуляторов напряжения уделяется большое внимание. Внедрены в производство контактнотранзисторные и бесконтактные транзисторные, а главное, интегральные ( рис. 47) регуляторы напряжения. Последние имеют меньшие размеры и массу, чем другие видь

регуляторов, более высокую допустимую рабочую температуру, что-позволяет встраивать их в генераторы, а значит, упростить электрическую схему, увеличить максимальный ток возбуждения генератора, стабильность и точность регулирования напряжения. Немаловажно и то обстоятельство, что переход на встроенные регуляторы напряжения дает значительную экономию металлов, в том числе дефицитных. [7]

Для борьбы с указанными выше неполадками в системе электроснабжения автомобилей были предложены и внедреньи регуляторы тока и регуляторы. [8]

2. Свинцовые аккумуляторные батареи.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора)

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

Реакции на аноде:

Реакции на катоде:

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует, по-возможности, избегать, так как при этом вода необратимо

расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, невзаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида

свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

В современных аккумуляторах электродные решётки изготавливаются не из чистого свинца, а из сплава свинца с сурьмой с содержанием её 1—2 % для повышения прочности и эксплуатационных характеристик. Иногда в сплав добавляют металлический кальций, для изготовления анодных и катодных электродных решёток, или только для анодных решёток. Добавление кальция имеет как преимущества, так и недостатки. Например, у аккумулятора с пластинами, легированнымикальцием при глубоких разрядах существенно и необратимо снижается ёмкость.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты(H2SO4). Соли кальция и магния (жесткая вода), всегда присутствующие в обычной воде ухудшают параметры аккумулятора и снижают срок его службы. Поэтому для приготовления раствора кислоты применяют дистиллированную воду. Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери.

Однако, на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, при замерзании образуется лёд, который может разорвать банки аккумулятора.

Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде[5] малым током (1/20 номинальной ёмкости, выраженной в А·ч).

Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики[6] замера отличаются, главным образом, допускаемым конечным напряжением, поэтому дают различные результаты.

Резервная ёмкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008[7].

3. Тяговые аккумуляторные батареи Тяговые аккумуляторы для погрузчиков предназначены для использования в

напольном электротранспорте - электропогрузчиках, платформенных электротележках (электрокарах), электроштабелерах и другой электрической подъемно транспортной технике, в качестве источника электропитания электрических двигателей.

4. Балансиры тягових батарей

BMS (Battery Management System) – это электронная плата, которая ставится на аккумуляторную батарею с целью контроля процесса её заряда/разряда, мониторинга состояния аккумулятора и его элементов, контроля температуры, количества циклов заряда/разряда, защиты составных аккумуляторной батареи. Система управления и балансировки обеспечивает индивидуальный контроль напряжения и сопротивления каждого элемента аккумулятора, распределяет токи между составными аккумуляторной батареи во время зарядного процесса, контролирует ток разряда, определяет потерю емкости от дисбаланса, гарантирует безопасное подключение/отключение нагрузки.

Балансировка – это метод равномерного распределения заряда между всеми ячейками аккумуляторной батареи, благодаря чему максимально продлевается срок службы аккумулятора.

BMS предотвращает чрезмерный перезаряд, недозаряд и неравномерный разрядный процесс в отдельных аккумуляторных ячейках:

- осуществляя "перетасовку" энергии от наиболее заряженных клеток к менее заряженным (активная балансировка);

-снижая до достаточного низкого уровня поступление тока к практически полностью заряженной ячейке, одновременно с тем, когда менее заряженные аккумуляторные клетки продолжают получать нормальный зарядный ток (принцип шунтирования),

-обеспечивая процесс модульной зарядки;

-регулируя выходные токи ячеек аккумулятора, подключенного к электроустройству.

С целью защиты платы BMS от негативного воздействия влаги и пыли её покрывают специальным эпоксидным герметиком.

Не всегда аккумуляторы имеет только одну систему управления и балансировки. Иногда вместо одной платы BMS, подсоединяемой при помощи выходящих проводов к аккумуляторной батарее и контроллеру, используется сразу несколько связанным между собой регулировочных электронных плат, каждая из которых управляет определенным количеством ячеек и подает выходящие данные к единому контроллеру.

5. Литий-ионный аккумулятор

(Li-ion) — тип электрического аккумулятора, который широко распространён в современнойбытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны,ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили. Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году.

Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:

напряжение единичного элемента:

номинальное: 3,6-3,7 В;

максимальное: 4,23 В;

минимальное: 2,5-3,0 В;

удельная энергоёмкость: 240 Вт × ч/кг;

внутреннее сопротивление: 5 … 15 мОм/А × ч;

число циклов заряд/разряд до достижения 80 % ёмкости: 600;

время быстрого заряда: 15 мин … 1 час;

саморазряд при комнатной температуре: 3 % в месяц;

ток нагрузки относительно ёмкости С представленной в А•ч:

постоянный: до 65 С;

импульсный: до 500 С;

оптимальный: до 1 С;

диапазон рабочих температур: от -20°C до +60°C (наиболее оптимальная

+20°C);

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммамтокосъёмникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6,

оксиды

(LiMnO2)

и

соли

(LiMnRON)

металлов.

Преимущества[править | править вики-текст]

 

 

Высокая энергетическая плотность (ёмкость).

Низкий саморазряд.

Не требуют обслуживания.

Недостатки

Эффект памяти

Старение

6. Никель-металлогидридный аккумуляторы

(Ni-MH) — вторичный химический источник тока, в котором анодом является водородный металлогидридный электрод (обычно гидрид никель-лантан или

никель-литий), электролит — гидроксид калия,катод оксид никеля. ПараметрыТеоретическая энергоёмкость: 300 Вт·ч/кг.

Удельная энергоёмкость: около 60-72 Вт·ч/кг.

Удельная энергоплотность: около 150 Вт·ч/дм³.

ЭДС: 1,25 В.

Рабочая температура: −60…+55 °C.(−40…+55 °C)

Срок службы: около 200—500 циклов заряда/разряда.

саморазряд: до 100 % в год (у старых типов аккумуляторов)

Описание

У никель-металл-гидридных аккумуляторов типа «Крона», как правило — начальным напряжением 8,4 В, напряжение постепенно снижается до 7,2 В, а затем, когда энергия аккумулятора исчерпывается, напряжение снижается быстро. Этот тип аккумуляторов разработан для замены никель-кадмиевых аккумуляторов. Никель-металл-гидридные аккумуляторы имеют примерно на 20 % большую ёмкость при тех же габаритах, но меньший срок службы — от 200 до 500 циклов заряда/разряда. Саморазряд примерно в 1,5-2 раза выше, чем у никель-кадмиевых аккумуляторов.

NiMH аккумуляторы практически избавлены от «эффекта памяти». Это означает, что заряжать не полностью разряженный аккумулятор можно, если он не хранился больше нескольких дней в таком состоянии. Если же аккумулятор был частично разряжен, а затем не использовался в течение длительного времени (более 30 дней), то перед зарядом его необходимо разрядить.

Экологически безопасны.

Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда — 15-16 часов (типичная рекомендация производителя).

На аккумуляторные батареи влияет:[1]

1) Заряд:

Выбирайте интеллектуальное зарядное устройство, которое способно при определенных условиях (например, когда аккумулятор заряжен или перезаряжен при минусовом напряжении, или перегревается) автоматически выключаться. Обычно заряд с меньшей скоростью позволяет продлить срок

службы аккумуляторов по сравнению с использованием быстрого зарядного устройства.

2) Разряд:

На срок службы аккумуляторов значительно влияет глубина разряда (DOD). Чем выше DOD, тем короче срок службы аккумуляторов, и наоборот. Таким образом, следует избегать глубокого разряда аккумуляторов до очень низкого напряжения. В зависимости от тока разряда допустимым напряжением на выводах аккумулятора можно считать значение от 0,8 В до 1,0 В.

Разряд аккумуляторов при высокой температуре сократит срок их службы.

Если электронное устройство не блокирует полностью расход заряда аккумуляторов (например, потребляет ток в режиме ожидания), нахождение аккумуляторов внутри устройства в течение длительного времени может привести к их глубокому разряду.

Использование комбинации старых и новых аккумуляторов или аккумуляторов разной ёмкости, химического состава и уровня заряда может привести к их глубокому разряду или даже заряду с обратной полярностью.

3) Хранение:

Длительно хранение аккумуляторов в местах с повышенной температурой сокращает срок их службы.

Не забывайте вынимать аккумуляторы из зарядного устройства после заряда.

7. Зарядка свинцовых автомобильных аккумуляторов

Поверхность батареи нужно очистить, клеммы затереть до блеска. Откручиваем пробки, если таковые имеются, и замеряем уровень электролита. Если уровень ниже меток – восполняем электролит. Проверить нужно каждую банку. Если уровень будет ниже – будет осыпаться оголенная батарея, а это ускоренная смерть аккумулятора. К тому же, на зиму электролит нужно делать более плотным – так он лучше будет держать заряд на холоде. Если же у Вас батарея необслуживаемая, понятно, ничего Вы сделать не сможете.

Далее нужно подсоединить зарядное устройство. И выставить зарядный ток. Сила тока вычисляется из расчёта, что в амперах численно она должна быть равна одной десятой емкости батареи в Ач. Например, батарея на 60 Ач должна заряжаться током 6 А.

Быстрая подзарядка свинцово- Процесс зарядки будет длится примерно 20 кислотной АКБ на автомобиле. часов

Если же у Вас зарядное устройство не автоматическое, то Вам придется больше контролировать процесс. После выставления зарядного тока через 20 часов его значение нужно уменьшить вдвое и так заряжать еще 2 часа

8. Зарядка тяговых литий-ионных аккумуляторов

Заряд аккумулятора.

Важной особенностью литий-ионных аккумуляторов является их способность заряжаться высоким током, что позволяет полностью зарядить аккумулятор менее чем за 2 часа. Отсутствие эффекта памяти также позволяет осуществлять дробные циклы заряда любой продолжительности при любом уровне заряда. Дробный заряд продлевает срок жизни аккумулятора. Подзарядка аккумулятора осуществляется во время технического или обеденного перерыва от источника электропитания.

Преимущества Долгий срок службы.

Срок службы аккумулятора составляет рекордное количество циклов - до 5000. Li-ion аккумуляторы служат в 3 раза дольше. (У свинцово-кислотных 1000-1500 циклов).

Полностью необслуживаемая АКБ.

Аккумулятор не требует какого-либо обслуживания в течение всего срока эксплуатации.

Сверхбыстрый заряд.

Аккумулятор может быть полностью заряжен менее чем за 2 часа, что позволяет обходиться одним комплектом, даже при самом высоком уровне загрузки техники. А всего за 20 минут на 25% от номинальной ёмкости.

Подзарядка в любое время.

У литий-ионных аккумуляторов отсутствует эффект памяти, поэтому его можно в любой момент времени подзарядить силами водителя техники.

Безвредность и безопасность.

Аккумулятор полностью герметичен, у него отсутствуют токсичные и коррозионно-активные выбросы при любом режиме эксплуатации и заряде. Встроенная система защиты полностью защищает аккумулятор от нештатных режимов работы.

Экономия на содержании зарядной комнаты и дополнительного персонала. Отсутствие выделения водорода устраняет необходимость строительства зарядной комнаты, содержание дополнительного персонала и оборудования для обслуживания.

Удобство использования.

Заряд Li-ion аккумуляторной батареи может производиться непосредственно в производственном помещении от сети. Для заряда не требуется снятие аккумулятора с погрузчика. А также ряд других преимуществ:

Высокое КПД.

Можно хранить в разряженном состоянии.

Разрядка до 10% от номинальной емкости.

Широкий температурный диапазон использования — 40 до + 50 Сo.

Зарядное устройство 220В.

9. Разумные батареи - это аккумуляторы, оборудованные специальной микросхемой, в которой запрограммированы постоянные и временные данные. Постоянные данные программируются ещё на заводе-изготовителе и не подлежат изменению: данные, касаемые производственной серии BMS, её маркировки, совместимости с типом аккумуляторных батарей, вольтажа, максимальных и минимальных пределов напряжения, температурных границ. Временные же данные – это данные, подлежащие периодическому обновлению. К ним относятся преимущественно эксплуатационные требования и пользовательские данные. Как правило, предусматривается возможность подключения системы управления и балансировки к компьютеру или контроллеру с целью мониторинга состояния батарей и контроля их параметров. Некоторые модели BMS могут настраиваться под разные типы батарей (уровни их напряжения, значения тока, емкость). Система управления батареи (BMS) – электронная система, которая управляет заряд/разрядным процессом аккумуляторной батареи, отвечает за безопасность