Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
292
Добавлен:
04.03.2016
Размер:
8.93 Mб
Скачать

5.5 Схемы многоугольников

Простейшим многоугольником является треугольник (см. рисунок 5.11).

Рисунок 5.11 Схема «Треугольник».

Область применения схемы – от 35 кВ и более. Ее отличают простота, наглядность и экономичность. Однако на электростанциях, имеющих в основном потребителей первой категории, она применяется крайне редко. Питать потребителей первой категории от двух источников по одной линии, как и от одного источника по двум, нежелательно по соображениям надежности.

Более широкое распространение получила схема «Четырехугольник» (рисунок 5.12).

Рисунок 5.12 Схема «Четырехугольник».

Схема позволяет производить плановые ремонты выключателей без отключения присоединений. Однако при совпадении КЗ на линии в точке К1 с ремонтом выключателя Q1, релейная защита линии отключит выключатели Q2 и Q3 и вся схема обесточится.

На рисунке 5.13 показана схема четырехугольника с однорядным расположением выключателей, которая в аналогичной ситуации сохраняет один из источников питания и неповрежденную линию в работе.

Рисунок 5.13

Однорядное расположение выключателей позволяет производить расширение схемы, преобразуя ее в схему «пятиугольника» (рисунок 5.14). Конструкция ОРУ и эксплуатация выключателей при такой компоновке заметно упрощается. На всех присоединениях обязательно устанавливаются разъединители. При КЗ на любой линии или источнике питания защита действует на отключение двух выключателей. После этого размыкают разъединитель и включают выключатели, восстанавливая «кольцо».

Рисунок 5.14. Схема «Пятиугольник».

Схема «Пятиугольник», иногда ее называют схемой расширенного четырехугольника, применяется на напряжении 110 кВ и более. На напряжениях 110 и 220 кВ она является альтернативой схеме «Одна система шин с обходной», явно превосходя ее в надежности и экономичности.

Строительство любой электростанции осуществляется в течение нескольких лет. Между пуском первой очереди и следующими проходят годы. Иногда действующие ЭС расширяют и на них вводят новые блоки. Чтобы при расширении сохранить в работе существующую схему, ее дополняют. Например, к имеющемуся четырехугольнику подключают еще один. По такому принципу создают схемы связанных четырехугольников (рисунок 5.15) и шестиугольников.

Рисунок 5.15. Схема связанных четырехугольников.

Выключатели в перемычках ухудшают экономические показатели схемы и усложняют конструкцию распределительного устройства. Поэтому при большом количестве присоединений на напряжении 330 кВ и выше применяют схемы с многократным однотипным присоединением элементов.

5.6 Схемы «Полуторная» и 4/3 (четыре – третьих)

Схемы применяются на напряжении 330 кВ и выше при числе присоединений шесть и более.

На рисунке 5.16 показана схема, у которой отношение числа выключателей к числу присоединений равняется 1,5 (полтора).

Рисунок 5.16. Полуторная схема.

На рисунке 5.17 приведена схема, у которой отношение числа выключателей к числу присоединений равняется 4/3. Принцип построения схемы остается прежним, коэффициент экономичности (1,33) лучше, чем у полуторной (1,5), но применяется она все–таки реже.

Рисунок 5.17. Схема «Четыре – третьих».

Это связано с конструктивным исполнением схемы. Подвеска проводов двух присоединений в два яруса в одной ячейке требует увеличения высоты порталов и значительно удорожает конструкцию ОРУ. Если учесть, что высота стандартных порталов на ОРУ 500 кВ составляет 27 м, то становится понятно, почему такая конструкция применяется редко.

Эта проблема может быть решена путем использования соседних ячеек (рисунок 5.18), но при этом общие размеры ОРУ существенно возрастают.

Ширина ячейки ОРУ 500 кВ составляет 30 метров, а при такой компоновке число ячеек удваивается, соответственно вдвое возрастает длина ОРУ. Поэтому предпочтение чаще отдают полуторной схеме.