Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бурштейн, Шорыгин - Квантовохимические расчеты в органической химии и молекулярной спектроскопии.doc
Скачиваний:
114
Добавлен:
08.01.2014
Размер:
1.49 Mб
Скачать

Примечание. За нуль принято сродство к протону этилбензола.

Таблица 1.8 Барьеры внутреннего вращения (кДж/молъ) в бензильных соединениях C6Н5CH2XH3 и их протонированных формах C6Н6CH2XH3 вок­руг связи С—С между бензольным кольцом и метиленовой группой [53].

Х

Бензильное соединение

Протонированная форма

С

10

10

Si

11

23

Ge

12

24

Sn

13

27

Рb

18

39

σ,π-Сопряжение усиливается при переходе к бензильным соединениям с более тя­желыми атомами, причем в протонированных формах оно проявляется сильнее, чем в электрически нейтральных. Oб этом свидетельствуют данные табл. 1.8, в которой видно, что барьер внутреннего вращения при переходе от этилбензола к бензильным соединениям олова и свинца возрастает в 1,3—1,7 раза. Скорее всего, этот рост свя­зан с увеличением размера атома Х и частично с усилени­ем эффекта σ,π-сопряжения. В аналогичных карбкатионаx барьер внутреннего вращения возрастает в 2—4 раза. Столь значительное увеличение барьера не может быть связано с изменением стерических эффектов, так как они должны быть примерно одина­ковыми в карбкатионах и электрически нейтральных молекулах; скорее всего, оно связано с усилением эффекта сопряжения за счет сближения σ- и π-орбиталей на шкале энергии при переходе к бен-зильным соединениям с тяжелыми атомами.

Рис. 1.3. Влияние заместителя на направление реакции образования 4,5-дигидрофуранов (а) и формилциклопропанов (б). А — исходный интермедиат; R1 и R2 — координаты реак­ций; 1 — R2=H или CH3; 2 — R2 = СНО.

Выше был приведен пример, когда направление реакции (протонирования 1,2,4-о-ацетил-α-D-ксилопиранозы) определяется ве­личиной теплового эффекта. Однако на опыте далеко не всегда протекает термодинамически наиболее выгодная реакция. Как было указано, скорость реакции определяется свободной энергией акти­вации и в общем случае не коррелирует с ее теплотой. Решая при­кладные задачи, приходится достаточно часто сталкиваться с такими реакциями. В качестве примера рассмотрим результаты, полученные в работе [54]. Из эксперимента было известно, что карбанионы, генерированные в условиях межфазного катализа из броммалонового эфира, присоединяются к незамещенным или монозамещенным в β-положении α,β-непредельным альдегидам R1CH=C(R2)CHO, образуя или формилциклопропаны (R2=H,CH3), или формил-4,5-дигидро-фураны (R2=СНО) (см. схему реакций на стр. 35).

Однако выяснить причины такого влияния заместителей на направ­ление реакции экспериментаторы не смогли. Поэтому для изучения ее механизма были привлечены методы квантовой химии. Расчет тепловых эффектов показал, что реакция, которая приводит к образованию конечных продуктов с пятичленным циклом, является термодинамически более выгодной и этот результат не зависит от заместителя. Действительно, формилциклопропаны содержат напря­женный трехчленный цикл и поэтому являются термодинамически менее устойчивыми по сравнению с дигидрофуранами.

При детальном изучении механизма этой реакции было показано, что скорости двух конкурирующих процессов, которые приводят к образованию циклопропанов и дигидрофуранов, не коррелируют с их тепловыми эффектами, т.е. направление реакции определяется не ее термодина­микой, а кинетикой. Если R2=H или СН3, то на пути образования термодинамически более устойчивых дигидрофураиов лежит достаточно высокий активационный барьер. При комнатной температуре направление реакции определяется кинетическим фактором. В результате образуются термодинамически менее выгодные формилциклопропаны. При R2=CHO активационный барьер на пути образования 4,5-дигидрофуранов резко снижается и направление реакции определяется термодинамическим фактором, поэтому в результате реакции образуются более устойчивые формил-4,5-дигидрофураны (рис. 1.3).

Соседние файлы в предмете Химия