Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
цистеин.docx
Скачиваний:
60
Добавлен:
14.03.2016
Размер:
38.59 Кб
Скачать

Обмен цистеина

Вторая серосодержащая аминокислота - цистеин. Она условно заменима, так как для её синтеза необходим атом серы, источником которого служит незаменимая аминокислота метионин.

Для синтеза цистеина необходимы 2 аминокислоты:

Серин - источник углеродного скелета;

Метионин - первичный источник атома S (см. схему 12).

Синтез цистеина из гомоцистеина происходит в 2 стадии под действием пиридоксальзависимых ферментов цистатионинсинтазы и цис-татионинлиазы (см. схему 13).

При нарушении использования гомоцистеина в организме из него образуется гомоцистин (схема 14)

Гомоцистин может накапливаться в крови и тканях" выделяться с мочой, вызывая гомоцистинурию. Возможной причиной является наследственное нарушение обмена гомоцистеина либо гиповитаминоз фолиевой кислоты, а также витаминов В12 и В6. Патогенез Гомоцистеин, растворенный в плазме, провоцирует свободнорадикальное окисление липидов в липопротеинах крови и тем самым их задержку в крови, ускоряет агрегацию тромбоцитов, вызывает повреждение эндотелия сосудов. Сопутствующие заболевания Гомоцистеинемия считается фактором риска и обнаруживается в 30% случаев атеросклероза, тромбозов, ишемической болезни сердца. Она выявляется при болезни Альцгеймера, нарушениях беременности – невынашивание, мертворождения. Основы лечения При дефекте цистатионин-синтазы применяется лечение витамином В6 в дозе 250-500 мг/день. При дефекте метилен-тетрагидрофолат-редуктазы уровень гомоцистеина может быть снижен благодаря употреблению фолиевой кислоты по 5 мг/день. Витамин В12 также оказывает положительное влияние. Одновременно назначается диета со сниженным содержанием метионина, что достигается специальным подбором продуктов, бедных этой аминокислотой.

Из других биохимических нарушений можно отметить цистатионинурию, также часто возникающую при недостаточности витаминов группы В.

Биологические функции цистеина разнообразны и очень важны для организма. Так, цистеин, входящий в состав белков, играет необычайно важную роль в их фолдинге, поскольку тиогруппы цис способны образовывать прочную дисульфидную связь. При этом 2 остатка цистеина формируют молекулу цистина (см. схему 15).

Окислительная реакция протекает либо с участием кофермента NAD+ под действием фермента цистеинредуктазы, либо неферментативно. Дисульфидные связи стабилизируют пространственную структуру полипептидной цепи или связывают между собой 2 цепи (например, А- и В-цепи гормона инсулина). Очень многие белки и ферменты в активном центре содержат SH-группы, участвующие в катализе. При их окислении ферментативная активность падает. Восстановление SH-групп часто происходит с использованием глутатиона - атипичного трипептида, содержащего γ-глутаминовую кислоту, цистеин и глицин (см. схему 16).

Глутатион способен существовать в 2 формах - восстановленной (Г-SH) и окисленной (Г-S-S-F) и служит активным антиоксидантом в организме человека.

Как известно, некоторые ферменты содержат в активном центре SH-группы, абсолютно необходимые для каталитической реакции. При их окислении ферменты теряют свою активность. Предполагается, что одной из главных функций глутатиона является сохранение этих ферментов в активной восстановленной форме. Окисленный глутатион может вновь восстанавливаться под действием глутатионредуктазы, используя НАДФН2 и служить донатором водорода. С другой стороны, глутатион может оказывать ингибирующее действие на некоторые белки: в частности, известна реакция инактивации инсулина под действием глутатионинсулинтрансдегидрогеназы, в которой SH-глутатион является донатором водородных атомов, разрывающих дисульфидные связи между двумя полипептидными цепями молекулы инсулина. Показана коферментная функция глутатиона для дегидрогеназы фосфоглицериновой кислоты и глиоксалазы.

Ещё одним важным путём использования цис-теина можно считать синтез таурина в животных тканях, который происходит путём декарбоксилирования производных цистеина - цистеиновой и цистеинсульфиновой кислот (схема 17).

Таурин необходим для синтеза парных жёлч ных кислот в печени. Кроме того, он очень важен в клетках как антиоксидант и используется для снижения ПОЛ и связывания гипохлоританиона (в форме хлораминового комплекса).

Цистеин также служит предшественником тиоэтаноламинового фрагмента HS-KoA (кофермента А).

Поскольку в процессе катаболизма сера метионина в тканях в основном переходит в серу цистеина и взаимопревращение цистина в цистеин легко осуществляется, проблема окисления серы всех аминокислот практически сводится к окислению цистеина. Главным путем оказался окислительный, включающий окисление цистеина в цистеинсульфиновую кислоту, трансаминирование последней с α-кетоглутаратом и образование пирувата и сульфита по схеме (см. схему 18).

Сульфит, который получается в реакции, превращается в сульфат и выводится с мочой, либо превращается в эфиро-серные кислоты, которые также экскретируются почками. Цистеин - практически единственный источник сульфатов мочи.

Пути использования цистеина представлены на схеме (см. схему 19).