Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

steeeppin

.pdf
Скачиваний:
26
Добавлен:
14.03.2016
Размер:
3.47 Mб
Скачать

напряженности и плотности тока в точке. Тем самым будет дано дифференцированное описание теоретической схемы, лежащей в фундаменте классической электродинамики. Именно это описание и очерчивает исследуемый в теории предмет, характеризуя его существенные стороны и отношения.

Данный предмет будем отличать от тех абстрактных объектов, которые являются элементами теоретической схемы. Ни один из абстрактных объектов

фундаментальной теоретической схемы электродинамики изолированно от других не представляет в познании структуры электромагнитных процессов; ее

репрезентирует лишь вся сетка связей и отношений указанных абстрактных объектов, т. е. теоретическая схема как целое.

Эту же особенность теоретической схемы можно выявить, обратившись к уже рассмотренным образцам теоретического знания. Нетрудно установить, например,

что лишь вся совокупность отношений между элементами осциллятора (материальной точкой, квазиупругой силой и системой отсчета), а не каждый из этих объектов в отдельности, может служить изображением процесса простого колебаниякак предмета исследования теории механических колебаний. Чтобы отличить абстрактные объекты, с которыми оперирует исследователь в рамках теоретической схемы, от изучаемого предмета, системно-структурное изображение которого дает схема в целом, мы будем называть первые объектами оперирования, а вторые предметами исследования.

Теоретические схемы воспринимаются в качестве изображения предмета исследования благодаря особой процедуре их объективирования. Чтобы выяснить особенности этой процедуры и ее роль в построении теории, обратимся вначале к конкретному историческому примеру.

Так, при первом знакомстве с механикой Г. Герца создается впечатление, что

применяемая здесь исходная теоретическая схема является весьма искусственным изображением механических процессов. Герц строит всю механику на основе такой системы фундаментальных абстрактных объектов, где заданы только корреляции материальных точек (масс) к пространству и времени. Состояние движения

материальной системы характеризуется в теории Герца как перемещение материальных точек с постоянной скоростью по геодезическим линиям (“прямейшим путям”)[38].Идея Герца заключалась в том, чтобы любое движение механической системы описать, как свободное движение по одному из возможных прямейших путей”. При таком описании сила заменяется связью между

взаимодействующими системами ивыражается через характеристику кривизны пути, по которому движется система, ограниченная связями.

Сила и энергия в механике Герца уже не являются основными понятиями, посредством которых описываются состояние и изменение состояния системы; они

вторичные понятия и могут быть в принципе элиминированы за счет редукции к основным понятиям (“массе”, “пространствуи времени”)[39].

Герц показывает, что, исходя из предложенной им теоретической схемы, можно

получить известные законы механики и доказать в качестве теорем принцип Гамильтона и принцип наименьшего действия Эйлера Лагранжа как в классической форме, так и в форме принципа Якоби. Казалось бы, этих аргументов достаточно, чтобы обосновать теорию как выражение сущности механических процессов. Тем не менее Герц включает в изложение своей теории одно обоснование. Он отмечает, что после успехов теории электромагнитного поля в

физике утвердилось представление о процессах природы как взаимодействии весомых тел” (атомов, молекул, макротел) с мировой средой-эфиром, которая служит посредником в передаче взаимодействий одного тела на другое[40]. Все, что физика ранее называла передачей сил, является движением в мировой среде (эфире)[41].Поэтому силовые воздействия одного наблюдаемого тела на другое

можно представить как движение частиц-масс мировой среды. Согласно Герцу, если

дополнить каждую наблюдаемую механическую систему скрытой материальной системой, носителем которой является эфир, можно в любом случае рассмотреть движение системы как свободное (естественное) движение по одному из возможных прямейших путей[42].

Благодаря этим разъяснениям, предложенная Герцем теоретическая схема

механического движения начинает восприниматься как адекватное и естественное видение природы механических процессов.

Нетрудно заметить, что объективация теоретической схемы быладостигнута за счет ее связи с некоторой системой общих представлений об устройствеприроды,

посредством которых все природные процессы изображались как взаимодействие тел и эфира. Система таких представлений является особым компонентом научного знания и образует физическую картину мира. Здесь мы подошли к особой проблеме

оснований науки и научной картины мира как компонента этих оснований.

Примечания

[1]См., например: Margenau Н. The Nature of Physical Reality. N.Y.-L., 1950.

P.86.

[2]Если учесть, что корреляции абстрактных объектов теории идентичны смыслу ее высказываний, то невозможность появления у таких объектов признаков, несовместимых с первоначально введенными, будет соответствовать известному требованию непротиворечивости высказываний внутри теории.

[3]Margenau H. The Nature of Physical Reality. N.Y.-L., 1950. С. 85.

[4]Рокицкий П.Ф., Савченко В.К., Добина А.И. Генетическая структура популяций и ее изменения при отборе. Минск, 1977. С. 12.

[5]См.: Харрис Л. Денежная теория. М., 1990. С. 139—156

[6]См.: Харрис Л. Денежная теория. С.578—579, 580—595.

[7]Розин В.М. Специфика и формирование естественных, технических и гуманитарных наук. Красноярск, 1989.

[8]Там же. С. 40—46, 48—65.

[9]Там же. С. 48—53.

[10]Ньютон в своих Началахуже в исходном определении пространства и времени отметил, что в механике физическое пространство тождественно истинному”, или математическому пространству”, а физическое время — “истинному”, или математическому времени”.

[11]О процедурах конструирования модели малых колебаний на основе фундаментальной теоретической схемы механики будет сказано ниже.

[12]Исследователь, применяющий такой прием анализа знаний, может осознавать его условность и даже специально оговаривать его ограниченность. Но

если в распоряжении исследователя нет других эталонов теоретической организации, то вольно или невольно он будет смотреть на научную теорию как на аксиоматико-дедуктивную систему и пытаться прежде всего установить, что в ней соответствует принятому эталону. Все остальное оказывается вне сферы конкретного анализа.

[13]Различие аксиологического и генетически конструктивного развертывания теории в отечественной логико-методологической литературе впервые было проведено в работах В.А. Смирнова (см. Смирнов В.А. Генетический метод построения научной теории // Философские вопросы современной формальной логики. М., 1962).

[14]Там же. С. 269.

[15]Там же.

[16]Hilbert D., Bernays P. Grundlagen der Mathematik. Bd. 1. Berlin, 1934. S. 20.

[17]Как показано В. А. Смирновым, традиционная трактовка НачалЕвклида только как образца аксиоматического построения теории не учитывает, что

дедуктивное развертывание теорий может осуществляться не только в форме аксиоматического, но и в форме генетически-конструктивного построения. “Концепция, проводимая в Началах”, — отмечает он, — это не несовершенная

попытка осуществить идеал аксиоматического метода в современном его понимании, а попытка конструктивного (генетического) построения теории” (Смирнов В.А. Генетический метод построения научной теории.С. 278).

[18]См.: Яновская С.А. Методологические проблемы науки. М., 1972; Розин В.М., Москаева А.С. К анализу строения системы знаний НачалЕвклида // Новые исследования в педагогических науках. Вып. IХ: М., 1967.

[19]Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1960. С. 111—112.

[20]Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1960. С. 127.

[21]Там же. С. 127—128.

[22]В случае использования математического формализма в физике соответствующие символы и их связи воспринимаются только со стороны их математического смысла (как математические объекты и операции над ними). Физический смысл данных терминов при таком движении не эксплицируется.

[23]Вследствие этого в процессе философского анализа языка науки теоретическая схема может быть выделена и зафиксирована прежде всего на стыке различных языковых контекстов, а не путем указания на какую-либо одну форму выражения.

[24]Kuhn Т. Postscriptum-1969. In: Structure of Scientific Revolutions. 2 ed. enl. Chicago, 1970.

[25]См.: Розенбергер Ф. История физики. М.-Л., 1937. Ч. II. С. 136.

[26]Этот пример, показывающий как структура экспериментальной деятельности выявляет объект исследования, был подробно проанализирован в книге: Степин В.С., Томильчик Л.М. Практическая природа познания и методологические проблемы современной физики. Минск, 1970. С. 19—31.

[27]Термин инвариантное содержаниене должен восприниматься как указание на индуктивный способ получения теоретического содержания. Для того чтобы получить теоретический инвариант, нужно заранее знать, что та или иная группа эмпирических схем образует класс. Этот класс легко установить сверху”, при редукции теоретических схем к эмпирическим, но при движении снизу, глядя с позиции одной эмпирической схемы на другую, вовсе не очевидно, что они имеют общее содержание. Показательно, например, что, согласно дофарадеевским взглядам на электричество, различные электрические явления, зафиксированные в опыте, рассматривались как явления принципиально разной природы (тогда различали электричество трения, гальваническое электричество и т.д.). Поэтому эмпирические схемы, которые у Фарадея были объединены в единый класс, воспринимались ранее как разрозненный конгломерат.

[28]См. Степин В. С., Томильчик Л. М. Практическая природа познания и методологические проблемы современной физики. Минск, 1970. С. 35—36.

[29]Во избежание недоразумений следует подчеркнуть, что в данном случае атомное ядросуть идеальный объект, выступающий как носитель ограниченного числа жестко фиксированных признаков (реальный же объект неисчерпаем в своих признаках).

[30]Гинзбург В. Л.,Сыроватский С.И. Гамма- и рентгеновская астрономия // Над чем думают физики. Вып. 6. “Астрофизика”. М., 1967. С. 36.

[31]Нейгебауэр О. Точные науки в древности. .М., 1968. С. 111.

[32]Bridgman P. W. The Logic of Modern Physics. N.Y., 1954. С. 22—23.

[33]В отечественной литературе наиболее обстоятельно и достаточно корректно критика операционализма была дана в работах Д.В.Пивоварова (см.: Пивоваров Д. В. Практика и формирование познавательного образа // Ленинская теория отражения. Вып. 5. Свердловск, 1971).

[34]Bridgman P. W. Reflections of a Physicist. I I ed. N. Y., 1955. Р. 153.

[35]Бунге М. Существуют ли операциональные определения физических понятий? // Вопросы философии. 1966. 11. С. 74.

[36]Мандельштам Л.И. Лекции по оптике, теории относительности и квантовой механике. М., 1972. С. 327.

[37]Кузнецов И.В. Избранные труды по методологии физики. М., 1975. С. 30—31; Штофф В.А. Моделирование и философия. М.-Л., 1966. С. 155—157; Вартофский М. Модели, репрезентация и научное понимание. М., 1988. С. 29—31.

[38]Герц Г. Принципы механики, изложенные в новой связи. М., 1959. С. 33.

[39]Там же С. 40—41.

[40]Там же. С. 41.

[41]Григорян А.Т. Механика от античности до наших дней. М., 1971. С. 284.

[42]Герц Г. Принципы механики, изложенные в новой связи. М., 1959. С. 355.

Глава IV

Генезис теоретических знаний в классической науке

Анализ структуры теоретических знаний позволяет конкретизировать проблему их генезиса. Ключевая роль теоретических схем как при интерпретации аппарата теории, так и в процессе развертывания ее содержания делает главной в генезисе теории проблему формирования теоретических схем. По-видимому, анализ структуры теории, если его проводить с акцентом на выявление связей между компонентами теории и репрезентируемой в ней реальностью, неизбежно приводит к такой постановке задачи. Предпринимая попытку решить эту задачу, мы будем

опираться на выявленные в процессе анализа структуры теории основные характеристики теоретических схем. Знание таких характеристик определяет способ анализа материала истории науки, в котором запечатлены основные приемы и операции исследовательской мысли, приводящей к формированию теории.

Основная цель будет заключаться в том, чтобы путем реконструкции

исторического материала выявить эти приемы и операции и таким образом выяснить, как создается ядро теоретических знаний.

Поскольку анализ структуры теории обнаружил, что существуют два уровня

теоретических схем и соответственно этому два уровня организации теоретических знаний, постольку целесообразно исследовать генезис теории соответственно этим уровням: вначале рассмотреть, как формируются частные теоретические схемы (до их включения в развитую теорию), а затем перейти к проблеме становления развитой теории.

Приступая к решению этой задачи, следует принять во внимание факторы эволюции науки, которые меняют приемы построения теоретических знаний.

В истории науки обычно различают классический и неклассический периоды, каждому из которых присущи специфические приемы создания теории.

Поэтому целесообразно вначале проанализировать пути построения теоретических схем в классической науке, а затем рассмотреть, что изменилось в приемах их построения на современном этапе.

Но прежде чем приступить к этому анализу следует решить еще одну важную проблему. Она связана с выяснением роли эмпирических оснований в генезисе дисциплинарных онтологий специальных научных картин мира, которые представляют собой особую форму теоретического знания. Это важно, поскольку в

классической науке специальные картины мира всегда предшествуют теоретическим схемам. Существует множество ситуаций, когда наука начинает исследовать соответствующую предметную область, не имея средств и возможностей создать конкретные теоретические схемы для ее объяснения. В таких ситуациях наука изучает свою область эмпирическими методами, накапливая необходимые опытные факты. Принципы картины мира ставят задачи исследованию, целенаправляют наблюдения и эксперименты и дают им объяснения.

Поскольку картина мира принадлежит к слою теоретических знаний, она обладает объяснительными и предсказательными функциями. По этому признаку ее иногда называют теорией. Строго говоря, это не корректно, поскольку в этом случае не проводится различие между формами теоретического знания. Но если согласится с таким употреблением понятий (которое распространено в методологически неглубоком уровне рефлексии и применяется в рамках так называемого здравого смысланауки), то следует иметь в виду, что термин теорияиспользуется здесь не строго, а расширительно, как эквивалентный термину теоретическое знание”.

Однако в методологическом анализе предпочтителен дифференцированный подход, различающий картину мира, которая описывается в системе теоретических принципов, и конкретные теории, включающие в свой состав теоретические схемы и соответствующие им формулировки законов. Поскольку теоретические схемы обретают онтологический статус только через связь с картиной мира, постольку для понимания процесса их формирования важно выяснить, как создаются и развиваются научные картины мира (дисциплинарные онтологии). Для этой цели опять таки следует различать две ситуации: развитие картины мира под

непосредственным влиянием опыта и ее эволюцию под влиянием создаваемых теорий, которые опосредуют ее взаимодействие с эмпирическим материалом.

Научная картина мира и опыт

Ситуация непосредственного взаимодействия научной картины мира и опытных данных может реализовываться в двух вариантах. Во-первых, на этапе становления новой области научного знания (научной дисциплины) и, во-вторых, в теоретически

развитых дисциплинах при эмпирическом обнаружении и исследовании принципиально новых явлений, которые не вписываются в уже имеющиеся теории.

Рассмотрим вначале, как взаимодействует картина мира и эмпирические факты на этапе зарождения научной дисциплины, которая вначале проходит стадию накопления эмпирического материала об исследуемых объектах. В этих условиях

эмпирическое исследование целенаправлено сложившимися идеалами науки и формирующейся специальной научной картиной мира (картиной исследуемой реальности). Последняя образует тот специфический слой теоретических представлений, который обеспечивает постановку задач эмпирического исследования, видение ситуаций наблюдения и эксперимента и интерпретацию их результатов[1].

Специальные картины мира как особая форма теоретических знаний являются продуктом длительного исторического развития науки. Они возникли в качестве

относительно самостоятельных фрагментов общенаучной картины мира на этапе формирования дисциплинарно организованной науки (конец XVIII — первая половина XIX в.). Но на ранних стадиях развития, в эпоху становления естествознания, такой организации науки еще не было. Это обстоятельство не всегда

адекватно осмысливается в методологических исследованиях. В 80-х годах, когда интенсивно обсуждался вопрос о статусе специальных картин мира, были высказаны три точки зрения: специальных картин мира вообще не существует и их не следует выделять в качестве особых форм теоретического знания; специальные картины мира являются ярко выраженными автономными образованиями; их автономия крайне относительна, поскольку они выступают фрагментами общенаучной картины мира. Однако в истории науки могут найти подтверждения все три точки зрения, только они относятся к разным ее стадиям: додисциплинарной науке XVII века, дисциплинарно организованной науке XIX — первой половины XX века, современной науке с ее усиливающимися междисциплинарными связями. Эти стадии следует различать.

Первой из наук, которая сформировала целостную картину мира, опирающуюся на результаты экспериментальных исследований, была физика. В своих

зародышевых формах возникающая физическая картина мира содержала множество натурфилософских наслоений. Но даже в этой форме она целенаправляла процесс эмпирического исследования и накопление новых фактов.

Вкачестве характерного примера такого взаимодействия картины мира и опыта

вэпоху становления естествознания можно указать на эксперименты В.Гильберта, в которых исследовались особенности электричества и магнетизма.

Гильберт был одним из первых ученых, который противопоставил мировоззренческим установкам средневековой науки новый идеал экспериментальное изучение природы. Однако картина мира, которая целенаправляла его эксперименты, включала ряд представлений, заимствованных из господствовавшей в Средневековье аристотелевской натурфилософии. Хотя Гильберт и критиковал концепцию перипатетиков о четырех элементах (земли, воды, воздуха и огня) как основе всех других тел, он использовал представления о металлах как сгущениях земли и об электризуемых телах как о сгущениях воды. На

основе этих представлений Гильберт выдвинул ряд гипотез относительно электрических и магнитных явлений. Эти гипотезы не выходили за рамки натурфилософских построений, но они послужили импульсом к постановке экспериментов, обнаруживших реальные факты. Например, представления об электрических телахкак воплощении стихии водыпородили гипотезу о том, что все электрические явления результат истечения флюидовиз наэлектризованных тел. Отсюда Гильберт предположил, что электрические

истечения должны задерживаться преградами из бумаги и ткани и что огонь должен уничтожать электрические действия, поскольку он испаряет истечение[2]. Так возникла идея серии экспериментов, обнаруживших факты экранирования

электрического поля некоторыми видами материальных тел и факты воздействия пламени на наэлектризованные тела (если использовать современную терминологию, то здесь было по существу обнаружено, что пламя обладает свойствами проводника).

Аналогичным образом представления о магните как о сгущении Земли генерировали знаменитые эксперименты Гильберта с шаровым магнитом, посредством которых было доказано, что Земля является шаровым магнитом, и выяснены свойства земного магнетизма. Эксперимент с шаровым магнитом выглядит весьма изящным даже по меркам современных физических опытов. В его основе лежала аналогия между шаровым магнитом (террелой) и Землей. Гильберт исследовал поведение миниатюрной магнитной стрелки, помещаемой в разных точках террелы, и затем полученные данные сравнил с известными из практики мореплавания фактами ориентации магнитной стрелки относительно Земли. Из сравнения этих данных Гильберт заключил, что Земля есть шаровой магнит.

Исходная аналогия между террелой и Землей была подсказана принятой Гильбертом картиной мира, в которой магнит как разновидность металлов рассматривался в качестве воплощения природы земли”, Гильберт даже в названии шарового магнита (“террела” — земля) подчеркивает общность материи Земли и

материи магнита и естественность аналогии между земным шаром и шаровым магнитом.

Целенаправляя наблюдения и эксперименты, картина мира всегда испытывает их обратное воздействие. Можно констатировать, что новые факты, полученные В.Гильбертом в процессе эмпирического исследования процессов электричества и магнетизма, генерировали ряд достаточно существенных изменений в первоначально принятой им картине мира. По аналогии с представлениями о Земле как большом магните”, Гильберт включает в картину мира представления о планетах как о магнитных телах. Он высказывает смелую гипотезу о том, что планеты удерживают на их орбитах силы магнитного притяжения. Такая трактовка, навеянная экспериментами с магнитами, радикально меняла представление о природе сил. В это время силу рассматривали как результат соприкосновения тел (сила давления одного груза на другой, сила удара)[3]. Новая трактовка силы была преддверием будущих представлений механической картины мира, в которой

передача сил на расстоянии рассматривалась как источник изменений в состоянии движения тел.

Полученные из наблюдения факты могут не только видоизменять сложившуюся картину мира, но и привести к противоречиям в ней и потребовать ее перестройки. Лишь пройдя длительный этап развития, картина мира очищается от натурфилософских наслоений и превращается в специальную картину мира, конструкты которой (в отличие от натурфилософских схем) вводятся по признакам, имеющим опытное обоснование.

В истории науки первой осуществила такую эволюцию физика. В конце XVI — первой половине XVII века она перестроила натурфилософскую схему мира,

господствовавшую в физике Средневековья и создала научную картину физической реальности механическую картину мира. В ее становлении решающую роль

сыграли новые мировоззренческие идеи и новые идеалы познавательной деятельности, сложившиеся в культуре эпохи Возрождения и начала Нового времени. Осмысленные в философии, они предстали в форме принципов, которые

обеспечили новое видение накопленных предшествующим познанием и практикой фактов об исследуемых в физике процессах и позволили создать новую систему представлений об этих процессах. Важнейшую роль в построении механической картины мира сыграли: принцип материального единства мира, исключающий схоластическое разделение на земной и небесный мир; принцип причинности и закономерности природных процессов, принципы экспериментального обоснования

знания и установка на соединение экспериментального исследования природы с описанием ее законов на языке математики.

Обеспечив построение механической картины мира, эти принципы превратились в ее философское обоснование.

После возникновения механической картины мира процесс формирования специальных картин мира протекает уже в новых условиях. Специальные картины мира, возникавшие в других областях естествознания, испытывали воздействие физической картины мира как лидера естествознания и, в свою очередь, оказывали на физику активное обратное воздействие. В самой же физике построение каждой

новой картины мира происходило не путем выдвижения натурфилософских схем с их последующей адаптацией к опыту, а путем преобразования уже сложившихся физических картин мира, конструкты которых активно использовались в последующем теоретическом синтезе (примером может служить перенос

представлений об абсолютном пространстве и времени из механической в электродинамическую картину мира конца XIX столетия).

Ситуация взаимодействия картины мира и эмпирического материала, характерная для ранних стадий формирования научной дисциплины, воспроизводится и на более поздних этапах научного познания. Даже тогда, когда наука сформировала слой конкретных теорий, эксперимент и наблюдение способны обнаружить объекты, не объясняемые в рамках существующих теоретических представлений. Тогда новые объекты изучаются эмпирическими средствами, и картина мира начинает регулировать процесс такого исследования, испытывая обратное воздействие его результатов.

Весьма показательным примером в этом отношении может служить экспериментальное открытие катодных лучей в конце XIX века и изучение их основных свойств.

После того как эти лучи случайно были обнаружены в опытах с электрическими разрядами в газовых трубках, выяснилось, что существующие теоретические знания ничего не говорят о природе нового физического агента. Тогда начался довольно

продолжительный период изучения катодных лучей преимущественно экспериментальными средствами. Было установлено, что катодный пучок способен вращать радиометр (эффект механического действия катодных лучей), что

поставленный на их пути мальтийский крестик дает на флюоресцирующем стекле четкую тень (прямолинейность распространения катодных лучей), что приближение

к ним магнита приводит к смещению вызываемого ими флюоресцирующего пятна (эффект взаимодействия катодных лучей с магнитным полем). Все эти свойства катодных лучей были выявлены в экспериментах Крукса, который заключил, что катодные лучи являются потоком заряженных корпускул.

Обычно считается, что гипотеза о корпускулярной природе катодных лучей была выдвинута Круксом после проведения экспериментов как их обобщение. Но это не так, поскольку в общем виде эта гипотеза предшествовала опытам Крукса.

Они были целенаправлены особой системой исторически сложившихся представлений о физической реальности, согласно которым процессы природы трактовались как взаимодействие лучистой материи” (колебаний эфира) и частиц, несущих электрический заряд (способных в свою очередь образовывать тела как заряженные, так и электрически нейтральные).

Указанная система представлений не являлась теорией в собственном смысле слова, поскольку она не содержала конкретных теоретических моделей и законов, объясняющих и предсказывающих результаты экспериментов. Это была физическая картина мира, принятая в естествознании в конце XIX — начале XX века.

Из этой картины следовало, что физический агент, природу которого надлежало изучить, мог быть либо потоком корпускул (электрически заряженных или нейтральных), либо лучистой материей”. Крукс с самого начала придерживался корпускулярной гипотезы и свои опыты ставил с целью ее обоснования. Характерно, что в этот период другими исследователями (Ленард, Герц) проводилась экспериментальная проверка и альтернативного предположения о волновой природе катодных лучей (опыты дали отрицательный ответ, показав, что катодные лучи не являются электромагнитными волнами).

Важно, что в обоих случаях первичная гипотеза, в соответствии с которой выдвигалась основная задача экспериментального исследования, была генерирована физической картиной мира. В дальнейшем по мере сопоставления гипотезы с

возможностями эксперимента общая задача исследований конкретизировалась и расчленялась на ряд локальных задач: выяснялось, какие эффекты могут подтвердить корпускулярную (соответственно волновую) природу катодных лучей, намечалось, какими средствами можно регистрировать указанные эффекты, и т.д.

Отсюда и возникал замысел каждого из экспериментов, поставленных Круксом, Ленардом, Герцем и другими исследователями. Картина физической реальности определяла здесь стратегию экспериментальной деятельности, формулируя ее задачи и указывая пути их решения.

В свою очередь, полученные факты оказывали активное обратное воздействие на сложившуюся физическую картину мира. Появилась гипотеза об особой природе частиц, образующих катодные лучи, которые Крукс полагал частицами, лежащими

воснове физики Вселенной”. “Я беру на себя смелость предположить, — писал Крукс, — что главные проблемы будущего найдут свое решение именно в этой области и даже за нею. Здесь, по моему мнению, сосредоточены окончательные реальности, тончайшие, определяющие, таинственные[4].

Последующее развитие физики во многом подтвердило эту гипотезу, доказав, что отрицательно заряженные частицы, составляющие катодные лучи, не являются ионами, а представляют собой электроны (эксперименты Томсона и Ленарда и теория Лоренца).

Функционирование научной картины мира в качестве исследовательской программы эмпирического поиска обнаруживается как в процессе экспериментального исследования, так и в науках, основанных на наблюдениях и не применяющих экспериментальных методов.

Так, в современной астрономии, несмотря на довольно развитый слой теоретических моделей и законов, значительное место принадлежит исследованиям,

вкоторых картина мира непосредственно регулирует процесс наблюдения и формирования эмпирических фактов. Астрономическое наблюдение весьма часто обнаруживает новый тип объектов или новые стороны взаимодействий, которые не могут быть сразу объяснены в рамках имеющихся теорий. Тогда картина реальности активно целенаправляет все последующие систематические наблюдения, в которых постепенно раскрываются особенности нового объекта.

Характерным примером в этом отношении может служить открытие и изучение квазаров. После обнаружения первого квазара радиоисточника 3С 48 — сразу же возник вопрос, к какому типу космических объектов он относится? В картине исследуемой реальности, сложившейся ко времени открытия квазаров, наиболее подходящимитипами объектов для этой цели могли быть звезды, либо очень удаленные галактики. Обе гипотезы целенаправленно проверялись в наблюдениях. Именно в процессе такой проверки были обнаружены первые свойства квазаров.

Дальнейшее исследование этих объектов эмпирическими средствами также проходило при активной корректировке со стороны картины реальности. В частности, можно установить ее целенаправляющую роль в одном из ключевых моментов этого исследования, а именно открытии большого красного смещения в спектрах квазаров. В истоках этого открытия лежала догадка М.Шмидта, который

отождествил эмиссионные линии в спектре квазаров с обычной бальмеровской серией водорода, допустив большое красное смещение (равное 0,158). Внешне эта догадка выглядит сугубо случайной, поскольку к этому времени считалось повсеместно, что квазары являются звездами нашей Галактики, а звезды Галактики не должны иметь такое смещение. Поэтому, чтобы возникла сама идея указанного отождествления линий, нужно было уже заранее выдвинуть экстравагантную гипотезу. Однако эта гипотеза перестает быть столь экстравагантной, если принять во внимание, что общие представления о структуре и эволюции Вселенной, сложившиеся к этому периоду в астрономии, включали представления о происходящих в галактиках грандиозных взрывах, которые сопровождаются выбросами вещества с большими скоростями, и о расширении нашей Вселенной.

Любое из этих представлений могло генерировать исходную гипотезу о возможности большого красного смещения в спектре квазаров.

С этих позиций за случайными элементами в рассматриваемом открытии уже прослеживается его внутренняя логика. Здесь выявляется важная сторона регулятивной функции, которую выполняла картина мира по отношению к процессу наблюдения. Эта картина позволяла не только сформулировать первичные гипотезы, которые целенаправляли наблюдения, но и помогала найти правильную интерпретацию соответствующих данных, обеспечивая переход от данных наблюдения к фактам науки.

Таким образом, первичная ситуация, характеризующая взаимодействие картины мира с наблюдениями и экспериментами, не отмирает с возникновением в науке конкретных теорий, а сохраняет свои основные характеристики как особый случай развития знания в условиях, когда исследование эмпирически обнаруживает новые объекты, для которых еще не создано адекватной теории.

В методологии науки исследование этих эвристических функций научной картины мира вначале проводилось на материале истории физико-математического естествознания. Для этого имелись свои основания, поскольку физика раньше

других опытных наук достигла высоких стадий теоретизации и здесь было легче отличить научную картину мира и теорию в качестве особых единиц теоретического знания, каждая из которых имеет специфические взаимосвязи с опытом. Но после

того как в рамках этого подхода была выявлена эвристическая роль физической картины мира, в эмпирическом познании возникла проблема: насколько универсальны разработанные методологические представления? Подтверждаются ли они применительно к другим наукам? Существуют ли в других научных дисциплинах формы знания, аналогичные физической картине мира, которые выполняют функцию весьма общей исследовательской программы науки?

Полемика вокруг специальных научных картин мира (дисциплинарных онтологий) не раз возникала в нашей литературе. Сформировалось два альтернативных подхода к проблеме.

Сторонники первого из них полагали, что по аналогии с физической картиной

мира могут быть выявлены и проанализированы соответствующие формы систематизации знаний в других науках. Сторонники второго подхода отрицали существование специальных научных картин мира, считая, что в методологическом анализе структуры и динамики знания можно обойтись без данного понятия. В поддержку этой позиции приводилась следующая аргументация. Прежде всего

критика была направлена против введения по аналогии с физической картиной мира терминов биологическая”, “химическая”, “техническаяи т.п. картины мира. Термины эти действительно не очень удачные, и их критика содержала рациональные моменты. Дело в том, что применительно к фундаментальным идеям и представлениям физики их обозначение термином картина мирабыло допустимым, поскольку предметом физического исследования являются фундаментальные структуры и взаимодействия, которые определяют эволюцию Вселенной и прослеживаются на всех стадиях этой эволюции. Но по отношению к другим наукам (биологии, химии, техническим и социальным наукам) этого сказать нельзя. Изучаемые ими процессы рассматриваются в современной системе

представлений о мире как возникшие только на определенном этапе развития Вселенной. Они не принадлежат к фундаментальным структурам Универсума, существующим на любых стадиях его развития. Поэтому интуитивно термины химическая картина мира”, “биологическая картина мираи т.п. вызывают неприятие.

Но критика термина еще не является основанием, чтобы отрицать обозначаемую им форму знания. В конце концов, поиск адекватной терминологии является важным, но не решающим в разработке проблем методологии науки. Кстати, термин картина исследуемой реальности” (биологической, химической, социальной и т.п.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]