Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

steeeppin

.pdf
Скачиваний:
26
Добавлен:
14.03.2016
Размер:
3.47 Mб
Скачать

маятника сохранять плоскость колебания позволяет использовать его и в качестве части регистрирующего устройства. Сама плоскость колебания здесь выступает в роли своеобразной стрелки, поворот которой относительно плоскости вращения Земли фиксирует наличие кориолисовой силы. Такого рода функционирование

взаимодействующих в опыте природных фрагментов в роли приборных подсистем или их элементов и выделяет актуально, как бы выталкиваетна передний план, отдельные свойства этих фрагментов. Все это приводит к функциональному

вычленению из множества потенциально возможных объектных структур практики именно той, которая репрезентирует изучаемую связь природы.

Такого рода связь выступает как объект исследования, который изучается и на эмпирическом, и на теоретическом уровнях познавательной деятельности.

Выделение объекта исследования из совокупности всех возможных связей природы определяется целями познания и на разных уровнях последнего находит свое выражение в формулировке различных познавательных задач. На уровне

экспериментального исследования такие задачи выступают как требование зафиксировать (измерить) наличие какого-либо характеристического свойства у испытуемого фрагмента природы. Однако важно сразу же уяснить, что объект исследования всегда представлен не отдельным элементом (вещью) внутри приборной ситуации, а всей ее структурой.

На примерах, разобранных выше, по существу было показано, что соответствующий объект исследования будь то процесс гармонического колебания или движение в неинерциальной системе отсчета может быть выявлен только через структуру отношений, участвующих в эксперименте природных фрагментов.

Аналогичным образом обстоит дело и в более сложных случаях, относящихся, например, к экспериментам в атомной физике. Так, в известных опытах по обнаружению комптон-эффекта предмет исследования — “корпускулярные свойства рентгеновского излучения, рассеянного на свободных электронах”, —

определялся через взаимодействие потока рентгеновского излучения и рассеивающей его графитной мишени при условии регистрации излучения особым прибором. И только структура отношений всех этих объектов (включая прибор для регистрации) репрезентирует исследуемый срез действительности. Такого рода фрагменты реальных экспериментальных ситуаций, использование которых задает объект исследования, будем называть в дальнейшем объектами оперирования.

Данное различение позволит избежать двусмысленности при использовании термина объектв процессе описания познавательных операций науки. В этом различии фиксируется тот существенный факт, что объект исследования не

совпадает ни с одним из отдельно взятых объектов оперирования любой экспериментальной ситуации. Подчеркнем также, что объекты оперирования по определению не тождественны естественнымфрагментам природы, поскольку выступают в системе эксперимента как своеобразные носителинекоторых функционально выделенных свойств. Как было показано выше, объекты оперирования обычно наделяются приборными функциями и в этом смысле, будучи реальными фрагментами природы, вместе с тем выступают и как продукты искусственной” (практической) деятельности человека.

Наблюдения выступают в этом случае не просто фиксацией некоторых признаков испытуемого фрагмента. Они несут неявно информацию и о тех связях, которые породили наблюдаемые феномены.

Конечная цель естественнонаучного исследования состоит в том, чтобы найти законы (существенные связи объектов), которые управляют природными процессами, и на этой основе предсказать будущие возможные состояния этих

процессов. Поэтому если исходить из глобальных целей познания, то предметом исследования нужно считать существенные связи и отношения природных объектов.

Но на разных уровнях познания такие связи изучаются по-разному. На теоретическом уровне они отображаются в чистом видечерез систему соответствующих абстракций. На эмпирическом они изучаются по их проявлению в непосредственно наблюдаемых эффектах. Поэтому глобальная цель познания конкретизируется применительно к каждому из его уровней. В экспериментальном исследовании она выступает в форме специфических задач, которые сводятся к тому, чтобы установить, как некоторое начальное состояние испытуемого фрагмента природы при фиксированных условиях порождает его конечное состояние. По

отношению к такой локальной познавательной задаче вводится особый предмет изучения. Им является объект, изменение состояний которого прослеживается в опыте. В отличие от предмета познания в глобальном смысле его можно было бы называть предметом эмпирического знания. Между ним и предметом познания, единым как для эмпирического, так и для теоретического уровней, имеется глубокая внутренняя связь.

Когда в эксперименте и наблюдении исследователь регистрирует конечное состояние O2 испытуемого объекта, то при наличии фиксированной приборной ситуации и начального O1 состояния объекта это эквивалентно нахождению последнего недостающего звена, которое позволяет охарактеризовать структуру экспериментальной деятельности. Определив эту структуру, исследователь тем

самым неявно выделяет среди многочисленных связей и отношений природных объектов связи (закономерности), которые управляют изменением состояний объекта эмпирического знания. Переход объекта из состояния O1 в состояние O2 не произволен, а определен законами природы. Поэтому, многократно зарегистрировав в эксперименте и наблюдении изменение состояний объекта, исследователь неявно фиксирует самой структурой деятельности и соответствующий закон природы.

Объекты эмпирического знания выступают здесь в качестве своеобразного индикатора предмета исследования, общего как для эмпирического, так и для теоретического уровней.

Разумеется, это становится возможным только при условии, когда отсутствуют неконтролируемые возмущающие воздействия, искажающие результат эксперимента.

Но в реальном исследовании, даже при самом тщательном соблюдении условий чистоты эксперимента, нет гарантий, что не появится случайная внешняя помеха, искажающая протекание изучаемого процесса. Тогда отдельно взятое наблюдение может предстать как итог влияния этой искажающей помехи. Кроме того возможны случайные и систематические ошибки приборов, применяемых в эксперименте и наблюдении, и, наконец, субъективные ошибки самого наблюдателя.

В силу всех этих случайностей и субъективных наслоений данные наблюдения не могут быть непосредственным эмпирическим базисом для теории. Такой базис составляют эмпирические знания иного типа эмпирические зависимости и факты, которые образуют особый слой эмпирического уровня науки, возвышающимся над слоем данных наблюдения.

Переход от данных наблюдения к эмпирическим зависимостям и научному факту предполагает элиминацию из наблюдений содержащихся в них субъективных моментов (связанных с возможными ошибками наблюдателя, случайными помехами, искажающими протекание изучаемых явлений, ошибками приборов) и получение достоверного объективного знания о явлениях.

Такой переход предполагает довольно сложные познавательные процедуры. Чтобы получить эмпирический факт, необходимо осуществить по меньшей мере два типа операций. Во-первых, рациональную обработку данных наблюдения и поиск в

них устойчивого, инвариантного содержания. Для формирования факта необходимо сравнить между собой множество наблюдений, выделить в них повторяющиеся признаки и устранить случайные возмущения и погрешности, связанные с ошибками наблюдателя. Если в процессе наблюдения производится измерение, то данные наблюдения записываются в виде чисел. Тогда для получения

эмпирического факта требуется определенная статистическая обработка результатов измерения, поиск среднестатистических величин в множестве этих данных.

Если в процессе наблюдения применялись приборные установки, то наряду с

протоколами наблюдения всегда составляется протокол контрольных испытаний приборов, в котором фиксируются их возможные систематические ошибки. При статистической обработке данных наблюдения эти ошибки также учитываются, они элиминируются из наблюдений в процессе поиска их инвариантного содержания.

Поиск инварианта как условия формирования эмпирического факта свойствен не только естественнонаучному, но и социально-историческому познанию. Скажем, историк, устанавливающий хронологию событий прошлого, всегда стремится выявить и сопоставить множество независимых исторических свидетельств, выступающих для него в функции данных наблюдения.

Во-вторых, для установления факта необходимо истолкование выявляемого в наблюдениях инвариантного содержания. В процессе такого истолкования широко используются ранее полученные теоретические знания.

Рассмотрим две конкретные ситуации, иллюстрирующие эту роль теоретических знаний при переходе от наблюдений к факту.

Известно, что одним из важных физических открытий конца XIX века было обнаружение катодных лучей, которые (как выяснилось в ходе дальнейших исследований) представляют собой поток электронов. Экспериментируя с катодными лучами, У.Крукс зарегистрировал их отклонение под воздействием магнита. Полученные в этом опыте данные наблюдения были интерпретированы им как доказательство того, что катодные лучи являются потоком заряженных частиц.

Основанием такой интерпретации послужили теоретические знания о взаимодействии заряженных частиц и поля, почерпнутые из классической электродинамики. Именно их применение привело к переходу от инварианта наблюдений к соответствующему эмпирическому факту.

Процедуру интерпретации данных наблюдения не следует путать с процессом формирования теории, которая должна дать объяснение полученному факту. Установление факта, что катодные лучи являются электрически заряженными частицами, не является теорией, хотя и получено с применением теоретических понятий.

Но тогда возникает очень сложная проблема, которая дискутируется сейчас в методологической литературе: получается, что для установления факта нужны теории, а они, как известно, должны проверяться фактами. Эта проблема решается только в том случае, если взаимодействие теории и факта рассматривается исторически. Безусловно, при установлении эмпирического факта используются полученные ранее достоверные теоретические знания, обоснованные другими фактами. Но только такие теоретические знания, которые были ранее проверены независимо. Что же касается новых фактов, то они могут служить основой для развития новых теоретических идей и представлений. В свою очередь новые теории, превратившиеся в достоверное знание, могут использоваться в процедурах

интерпретации при эмпирическом исследовании других областей действительности и формировании новых фактов.

Таким образом, при исследовании структуры эмпирического познания выясняется, что не существует чистой научной эмпирии, не содержащей в себе

примесей теоретического. Но это является не препятствием для формирования объективно истинного эмпирического знания, а условием такого формирования.

Эмпирические зависимости и факты, в отличие от данных наблюдения, уже не

соотносятся впрямую и непосредственно с конкретными приборными ситуациями конкретных, единичных экспериментов. Их отношение к реальным экспериментальным ситуациям опосредуется эмпирическими схемами, которые представляют собой особый вид модельных представлений, выражающих типовые черты некоторого класса реальных экспериментальных ситуаций, их предметную структуру. Именно с этими схемами непосредственно соотносятся эмпирические зависимости и эмпирические факты.

Обычно предварительный гипотетический вариант эмпирических схем формируется на этапе замысла эксперимента. Но после его осуществления и в

процессе перехода от протоколов наблюдения к эмпирическим зависимостям и фактам происходит обоснование гипотетических вариантов эмпирических схем в качестве выражения существенных черт некоторой серии реальных экспериментов.

Поскольку в процессе статистической обработки данных наблюдения сравниваются между собой протоколы наблюдений и протокол, фиксирующий среднестатистические данные поведения приборной установки, постольку в результате таких сопоставлений все объекты, взаимодействующие в опыте испытуемый фрагмент и (квази) приборные подсистемы, — оказываются определенными только по статистически инвариантным признакам. На этой основе выстраивается эмпирическая схема, обобщающая класс определенных экспериментальных взаимодействий. В этом смысле она буквально является схемой такого взаимодействия, изображающей его типические черты, реализующиеся в каждой конкретной экспериментально-измерительной ситуации. Вместе с тем

эмпирическая схема может быть рассмотрена не только как модельное представление деятельности эксперимента и измерения, но и объективировано, как изображение естественного природного процесса взаимодействия, в котором испытуемый объект при заданных условиях переходит из состояния О1 в состояние О2. Такой ракурс рассмотрения возникает в процессе интерпретации инварианта данных наблюдения при формировании факта.

Итак, эмпирические схемы выступают важным опосредующим звеном между теоретическими схемами и приборными ситуациями реальных экспериментов. Они могут быть получены как сверху”, при выводе из теоретических законов эмпирических следствий, так и снизукак результат перехода от данных наблюдения к эмпирическим зависимостям и фактам. Отношение теоретических схем к эмпирическим и возможность рассмотрения последних в двух ракурсах (как

модели экспериментальных ситуаций и как образа естественного природного процесса) позволяет в новом свете рассмотреть и природу теоретических схем. Каждая из них может быть сопоставлена с некоторым классом эмпирических схем (в примере с законом БиоСавара к этому классу относится не только схема опыта с прямолинейным проводом и магнитной стрелкой, но и схемы экспериментов с любыми формами проводников, по которым течет ток, и с любыми видами магнитов).

С этих позиций теоретическую схему можно рассматривать как инвариантное содержание эмпирических схем[27]. Учитывая, что последние выступают как изображение типовых черт экспериментально-измерительных ситуаций, в этом

аспекте правомерно рассмотреть и отношения абстрактных объектов теоретической схемы. Тогда они предстанут в форме особого идеализированного эксперимента,

выражающие наиболее общие и существенные черты реальной экспериментальной практики.

При анализе теоретических схем с этой точки зрения сразу обнаруживается их операциональнаясторона. Схема осциллятора, например, выступает как модель,

которая выражает существенные черты экспериментов с колебанием реальных маятников, натянутой струны, с периодическим сжатием и распрямлением пружины и т. д.

Предметная сторона всех этих реальных экспериментов в теоретической схеме представлена в форме мысленного эксперимента с материальной точкой, которая

отклоняется от положения равновесия и вновь возвращается в исходное положение под действием квазиупругой силы. Фундаментальные схемы, лежащие в основании развитой теории, также можно истолковать как предельно идеализированное изображение типовых черт экспериментальных ситуаций, обобщаемых и предсказываемых в рамках этой теории. Так, максвелловская теоретическая схема может быть рассмотрена как мысленный эксперимент, аккумулирующий в себе существенные характеристики экспериментальных процедур, обобщенных в схемах амперовской электродинамики, кулоновской электростатики и магнитостатики, фарадеевской индукции и др.

Фундаментальная теоретическая схема ньютоновской механики, изображая

механическое движение как перемещение материальной точки по континууму пространственных и временных точек системы отсчета под действием сил, представляла собой своеобразный мысленный эксперимент, который содержал

самые общие исущественные черты опытов по изучению различных сторон механического движения. В нем были обобщены практические операции перемещения тел по наклонной плоскости, колебания маятника, соударения тел, операции перевода потенциальной энергии в кинетическую при работе машин и т. д.

На эту сторону теоретических схем часто не обращается внимание потому, что в

большинстве случаев сама форматеоретической модели как бы маскирует ее операциональную природу. Однако, если провести соответствующий анализ, эта природа сразу предстанет в отчетливой форме. Мы привыкли, например,

рассматривать томсоновскую и резерфордовскую модели атома только как изображение некоторых сторон структуры атома. Однако внимательный анализ показывает, что каждая из этих моделей вместе с изображением структуры атома неявно вводит предельно абстрактную схему экспериментальных ситуаций, в рамках которых был выделен и изучался атом как особый фрагмент природы.

В модели Томсона атом изображается в виде осциллятора (положительно заряженная сфера с погруженными в нее электронами, способными отклоняться от положения равновесия), который взаимодействует с падающим на него излучением и способен генерировать излучение. Все основные признаки абстрактных объектов

модели Томсона определены через их отношение к идеальному пробному излучению, которое репрезентирует на уровне теоретической модели реальные пучки света, фиксируемые в экспериментах по изучению закономерностей взаимодействия света с веществом. Следовательно, модель Томсона может быть

представлена как абстрактное и схематизированное изображение существенных черт таких экспериментов[28].

С аналогичных позиций можно рассмотреть резерфордовскую планетарную модель атома. Она представляет собой теоретическую схему, образованную из следующих, связанных между собой абстрактных объектов: “центра потенциальных отталкивающих сил” (атомное ядро) и элементарных отрицательных зарядов” (электронов). В этой модели абстрактный объект атомное ядробыл определен по двум признакам: “нести положительный заряди быть центром потенциальных отталкивающих сил[29]. Принципиально важно, что последний признак имеет смысл лишь постольку, поскольку предполагается наличие пробного тела

идеальной α-частицы, рассеивающейся на центре потенциальных отталкивающих сил”.

Таким образом, главная отличительная характеристика резерфордовской модели атома представление об атомном ядре вводилась через описание мысленного эксперимента по рассеянию на системе ядро-электроны идеальной α-частицы. Этот

эксперимент выражал существенные особенности реальных опытов по рассеянию на атоме тяжелых частиц, опытов, посредством которых были выявлены реальные особенности структуры атома.

Модель Резерфорда имплицитно содержала в себе идеализированную схему указанных опытов, и эта особенность модели прямо проявлялась в тех физических законах, которые можно было получить на ее основе. Главные уравнения, которые Резерфорд получил, опираясь на планетарную модель атома, и которые позволяли объяснять ипредсказывать результаты реальных экспериментов, были выражением законов рассеяния на атоме тяжелых заряженных частиц.

Таким образом, модели Томсона и Резерфорда можно представить в форме мысленных экспериментов с атомом как осциллятором и с атомом как системой, рассеивающей тяжелые частицы. Каждый из этих экспериментов аккумулирует в себе существенные черты реальной экспериментально-измерительной практики, в рамках которой выявились соответствующие стороны реального атома. Они были

объектом изучения в исследованиях Томсона и Резерфорда и представлены в соответствующих моделях атома.

В итоге мы пришли к важному выводу, согласно которому теоретические схемы имеют две неразрывно связанные между собой стороны: 1) они выступают как особая модель экспериментально-измерительной практики и 2) одновременно служат системным изображением предмета исследования, выражением сущностных связей исследуемой реальности.

Этот вывод проиллюстрирован только материалом физики. Тем не менее его формулировка в общей форме вполне оправданна, так как можно показать, что данное утверждение справедливо по отношению ко всем эмпирическим наукам. Правда, на первый взгляд может показаться, что содержание теоретических высказываний таких наук, как астрономия, не может быть истолковано как схема практики, поскольку здесь нет активного вмешательства субъекта в протекание природных процессов как необходимого условия практической деятельности. Однако при ближайшем анализе выясняется, что астрономические наблюдения, проводимые в целях проверки тех или иных теоретических схем, носят характер своеобразных квазиэкспериментальных процедур. В процессе таких наблюдений объекты природы применяются в функции квазиприборных устройств, в результате чего создается характерная для экспериментально-измерительной деятельности приборная ситуация.

Чтобы лучше уяснить это обстоятельство, напомним, что любую

экспериментальную деятельность характеризует такое взаимодействие природных фрагментов, при котором они выступают как предметы-носители функционально выделенных свойств. В развитом физическом эксперименте такие предметы изготавливаются искусственно. Ими могут быть установки, приготовляющие пучки частиц с заданными параметрами (приготовляющая подсистема экспериментального устройства), мишени, бомбардируемые этими частицами (рабочая часть), приборы, регистрирующие результаты взаимодействия частиц с мишенью (регистрирующая часть экспериментального устройства).

Однако в функции средств экспериментальной деятельности могут применяться и естественные объекты природы, рассмотренные только со стороны их отдельных

свойств. В разобранном выше примере с изучением процессов колебания в

экспериментах с маятником Земля как источник тяготения была использована в функции квазиприборной подсистемы, обеспечивающей появление квазиупругой (возвращающей) силы.

Похожая ситуация возникла в опытах Фарадея по электромагнитной индукции, когда обнаружилось свойство магнитного поля Земли порождать э.д.с. в проводниках, пересекающих его магнитные силовые линии. Здесь Земля также использовалась в качестве своеобразной квазиприборной установки. Она рассматривалась только как источник магнетизма, совмещая функции приготовляющей ирабочей части приборной установки”. Само это свойство Земли было выявлено в предшествующих опытах с ориентацией магнитных стрелок. В

рассматриваемых опытах оно было функциональновыделено среди всех других многочисленных свойств Земли, благодаря чему стало возможным использовать нашу планету в функции особого фрагмента приборной ситуации.

Аналогичное использование объектов природы в функции своеобразных приборных устройств можно обнаружить и во многих современных физических опытах. Так, в опытах по исследованию нейтрино, излучаемых Солнцем, последнее рассматривалось как генератор нейтрино (приготовляющая подсистема). Исследование свойств нейтрино предполагало, что их нужно выделить среди других составляющих космического излучения. Для этой цели приборы-регистраторы погружались в шахту, и тогда кора Земли использовалась как особый экран, который задерживал все частицы космического излучения кроме нейтрино.

Систематические наблюдения в астрономии основаны на том же принципе применения естественных фрагментов природы в функции приборных подсистем.

В целях иллюстрации сказанного рассмотрим конкретный пример наблюдение за рентгеновским излучением Крабовидной туманности, осуществленное в 1964 г. с целью выяснить, каков источник этого излучения[30]. На

основе гипотезы о существовании нейтронных звезд было высказано предположение, что источником излучения может быть нейтронная звезда (практически точечный источник для земного наблюдателя), расположенная в Крабовидной туманности. Однако источником излучения мог быть и иной, протяженный источник, связанный с туманностью. Для выяснения характера

излучающего источника было использовано покрытие Крабовидной туманности диском Луны. В этот момент было измерено изменение интенсивности сигнала, идущего от рентгеновского источника (рентгеновские счетчики, поднятые на ракетах, регистрировали число γ-квантов за единицу времени). Эмпирическая зависимость, выявленная при статистической обработке данных наблюдений, показала, что интенсивность излучения уменьшалась не резко, а постепенно.

Нетрудно видеть, что в рамках рассмотренного исследования наблюдатель смог

получить информацию о характере излучения Крабовидной туманности лишь потому, что сконструировал из естественных процессов природы приборную ситуацию. Источник рентгеновского излучения, само это излучение и Луна, используемая в качестве своеобразного экрана, выступали в функции приготовляющей и рабочей подсистем приборного устройства”. Регистрирующая часть была выражена прибором, искусственно созданным в практике. Вся система

— “источник рентгеновского излучения в Крабовидной туманности”, “Лунаи регистрирующие устройства на Земле” — представляли собой своего рода гигантскую экспериментальную установку, функционирование которой позволяло отыскать исследуемую зависимость.

Создание приборной ситуации в процессе эмпирических исследований в астрономии может быть проиллюстрировано и на других фактах. Показательно в этом отношении, например, наблюдение за поляризацией света звезд, проводимое с

целью изучения магнитного поля Галактики. Приборная ситуация, которая характеризовала этот опыт, была построена путем выделения в системе взаимодействий природы: а) магнитного поля Галактики иориентированных им частиц в облаках межзвездной пыли; б) света, излучаемого звездой и проходящего через межзвездную пыль; в) приборов, регистрирующих эффекты поляризации.

Отношения между совокупностями всех этих объектов можно рассматривать как гигантское квазиэкспериментальное устройство, “работакоторого позволяла выявить эмпирические зависимости, характеризующие магнитное поле Галактики (предмет исследования). В рамках данной ситуации эта работазаключалась в том,

чтовзаимодействие света и ориентированных частиц межзвездной пыли порождало поляризацию света, по степени которой оказалось возможным судить о напряженности магнитного поля Галактики.

Несколько сложнее установить, как конструировалась приборная ситуация в эмпирических исследованиях астрономии на ранних этапах ее развития. Однако и здесь все происходило аналогичным образом. Так, даже простое визуальное наблюдение за перемещением планеты на небесном своде предполагало, что наблюдатель должен был предварительно выделить линию горизонта и метки на небесном своде (например, звезды), на фоне которых наблюдается движение планеты. Сами по себе эти операции, по существу, представляли небесный свод в виде своеобразной проградуированной шкалы, на которой фиксируется движение планеты как светящейся точки. Причем по мере

проникновения в астрономическую науку математических методов градуировка небесного свода становится все более точной и удобной для проведения измерений. Уже к IV столетию возникает Зодиак, состоящий из 12 участков по 30 градусов, как стандартная шкала для описания движения Солнца и планет[31].

Любое систематическое научное наблюдение независимо от того, осуществляется ли оно в процессе эксперимента или вне эксперимента, предполагает конструирование приборной ситуации. Систематические наблюдения можно рассматривать в этом плане как квазиэкспериментальную деятельность. Что же касается случайных наблюдений, то они не достаточны для научного исследования. Они могут стать начальным импульсом к новым исследованиям, но

при осуществлении таких исследований должны перерасти в систематические наблюдения. В случайных наблюдениях, как правило, регистрируется некоторый необычный эффект, но неизвестно, какие объекты участвуют во взаимодействии, порождающем данный эффект. Структура приборной ситуации здесь не определена,

инеизвестен объект эмпирического исследования. Переход от случайного к

систематическим наблюдениям предполагает построение приборной ситуации и четкую фиксацию объекта, изменение состояний которого изучается в опыте. Так, например, когда К.Янский в опытах по изучению грозовых помех на

межконтинентальные радиотелефонные передачи случайно натолкнулся на устойчивый радиошум, не связываемый ни с какими земными источниками, то это случайное наблюдение дало импульс серии систематических наблюдений, конечным итогом которых было открытие радиоизлучения области Млечного Пути.

Характерным моментом в осуществлении этих наблюдений было конструирование приборной ситуации.

Главная задача здесь состояла в том, чтобы определить источник устойчивого радиошума. После установления его внеземного происхождения решающим моментом явилось доказательство, что таким источником не являются Солнце, Луна

ипланеты. Наблюдения, позволившие сделать этот вывод, были основаны на применении двух типов приборной ситуации. Во-первых, использовалось вращение

Земли, толща которой применялась в наблюдении в функции экрана,

перекрывающего в определенное время суток Солнце, Луну и планеты (наблюдения показали, что в моменты такого перекрытия радиошум не исчезает). Во-вторых, в

наблюдении исследовалось поведение источника радиошума при перемещении Солнца, Луны и планет на небесном своде относительно линии горизонта и неподвижных звезд. Последние в этой ситуации были использованы в качестве реперных точек (средств наблюдения), по отношению к которым фиксировалось возможное перемещение источника радиошума. Вся эта серия опытов позволила в

конечном итоге идентифицировать положение источника с наблюдаемыми в каждый момент времени суток и года положениями на небосводе Млечного Пути.

Характерно, что в последнем шаге исследований К.Янского уже была четко обозначена предметная структура наблюдения, в рамках которой изучаемый эффект (радиошум) был представлен как радиоизлучение Млечного Пути. Было выделено начальное состояние объекта эмпирического знания положение источника радиошума на небесном своде в момент T1, конечное состояние положение источника в момент T2 и приборная ситуация (в качестве средств исследования фиксировались: небесный свод с выделенным на нем расположением звезд, линия горизонта, Земля, вращение которой обеспечивало изменение положений радиоисточника по отношению к наблюдателю, и наконец, приборы регистраторы радиоизлучения). Наблюдения с жестко фиксированной структурой

названного типа позволили раскрыть природу случайно обнаруженного эффекта радиоизлучения Млечного Пути.

Таким образом, путь от случайной регистрации нового явления к выяснению

основных условий его возникновения и его природы проходит через серию наблюдений, которые отчетливо предстают в качестве квазиэкспериментальной деятельности.

Анализ ситуаций систематического наблюдения, осуществляемого вне эксперимента, позволяет унифицировать подход к эмпирическим основаниям теории и операциональной трактовке теоретических схем. Тогда и теоретические

модели астрономии вполне правомерно рассматривать не только как отражение исследуемого объекта, но и как обобщенную схему предметной стороны наблюдения, выступающей в функции экспериментально-измерительных ситуаций, в рамках которых выявлен данный объект.

Как и в любой познавательной деятельности, здесь проявляется фундаментальный принцип, согласно которому объект познания определен лишь относительно некоторой системы деятельности. Познающему субъекту предмет исследования всегда дан в форме практики, и поэтому у него нет иного способа видения действительности, кроме как сквозь призму этой практики. Поэтому во всех

слоях научного знания содержится схематизированное и идеализированное изображение существенных черт практики, которое вместе с тем (а вернее, в силу этого) служит изображением исследуемой действительности. Это изображение на каждом из уровней исследования предстает в особой форме. Так, в реальном

эксперименте предмет исследования представлен через корреляции взаимодействующих в эксперименте объектов. Например, магнитное действие тока, изучаемое в опытах Био и Савара, задано через отношение реального провода к реальной магнитной стрелке, которая приобретает вращательный момент в период прохождения тока по проводу.

На следующем уровне исследований, в слое эмпирических схем, изучаемый предмет репрезентирован через корреляции эмпирических конструктов, образующих эмпирическую схему. Так, магнитное действие тока в эмпирических схемах Био и Савара было изображено посредством таких конструктов, как прямолинейный провод с током и пробная магнитная стрелка, с указанием их отношений как смысла соответствующей эмпирической формулы. Затем в слое

частных теоретических схем исследуемый объект вводится через корреляции абстрактных объектов. В нашем примере это будут абстрактные объекты — “усредненное по некоторому объему магнитное полеи порождающая его плотность заряда-тока (отношения этих объектов составляют смысл закона БиоСавара). Наконец, на уровне фундаментальной теоретической схемы, лежащей в основании развитой теории, предмет исследования представлен через корреляции абстрактных объектов данной схемы (например, магнитное действие тока на уровне максвелловской теории репрезентировано через отношение вектора плотности тока в точкек вектору магнитного поля в точке”, связи которых образуют смысл второй пары уравнений Максвелла).

Каждый из отмеченных уровней репрезентации объекта исследования представляет собой особый слой языка науки, где идеальные схемы предметной стороны экспериментально-измерительной практики выступают как содержательная плоскость, выраженная в соответствующей знаковой форме (рис. 2). Любой из этих

слоев языка имеет свои нормы построения и живет своей относительно самостоятельной жизнью, где за счет внутренних законов оперирования со знаками может возникать новое содержание (примером тому может служить хотя бы

введение новых абстрактных объектов за счет операций в рамках математического формализма теории).

Связь отмеченных уровней языка науки позволяет вводить соответственно новому содержанию каждого верхнего уровня объекты нижележащих уровней, благодаря чему оказывается возможным прогнозировать практику, предсказывая результаты будущих экспериментов. В сложившейся теории связь между различными уровнями языка достигается за счет особых языковых выражений, которые также входят в состав теории. Посредством этих выражений описывается способ редукции теоретических объектов к объектам нижележащих уровней. Выражения такого типа суть правила соответствия (операциональные определения).

Если учесть, что объекты схем каждого верхнего уровня выступают как инвариантное содержание корреляции объектов нижележащего слоя, описание

признаков соответствующих объектов в терминах таких корреляций и составляет суть операциональных определений.

Рис. 2. ЭЗ эмпирическая зависимость (1,2 – ассимилированная теорией; N – неассимилированная теорией); ЭС эмпирическая схема; Н1-n наблюдения (1-nусловное число наблюдений); ПС приборная ситуация; – предсказуемый теоретический закон и соответствующая Т. схема; – предсказуемая эмпирическая зависимость, эмпирическая схема, наблюдения и приборная ситуация.

На эту сторонуобычно не обращают достаточного внимания, потому что при анализе связей теории и эмпирии в лучшем случае выделяют лишь два уровня эмпирический итеоретический, но сами эти уровни уже рассматриваются недифференцированно.

Между тем вне дифференциации каждого из уровней знания нельзя понять структуру правил соответствия, которые обеспечивают связь теоретических терминов с опытом. Анализ этой связи всегда был в центре внимания как философов и методологов, так и физиков.

Хорошо известно, что основоположник философии операционализма, известный американский физик П. Бриджмен, в свое время развивал концепцию, согласно

которой правила соответствия представляют собой определения физических

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]