Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Эндокринология учебник Лавин

.pdf
Скачиваний:
703
Добавлен:
24.03.2016
Размер:
6.49 Mб
Скачать

девочек младшего и препубертатного возраста). Окончательный диагноз синдрома Тернера должен быть основан на данных цитогенетического анализа. Следует просматривать не менее 50 клеток.

в. Ведение больных с синдромом Тернера. Первоочередная задача — детальное обследование больных, особенно девочек младшего возраста. Цель обследования — выявление пороков сердца, расслаивания аорты, аномалий ЖКТ и почек, нарушений слуха. Может потребоваться хирургическое вмешательство. У девочек старшего возраста и у женщин часто встречаются хронический лимфоцитарный тиреоидит, хронические воспалительные заболевания кишечника и артериальная гипертония; эти заболевания требуют длительного консервативного лечения. Лечение соматропином (иногда в сочетании с анаболическими стероидами) ускоряет рост в детстве и увеличивает рост взрослых больных. Лечение соматропином можно начинать с 2 лет (но только в тех случаях, когда рост девочки меньше 5­го процентиля). Заместительную терапию низкими дозами эстрогенов начинают, как правило, после оссификации эпифизов (с 14 лет). Если больная тяжело переживает отсутствие пубертатных изменений, эстрогены назначают раньше. Даже при лечении гормонами вторичные половые признаки часто формируются не полностью. Женщины с синдромом Тернера обычно бесплодны, но в редких случаях происходит спонтанная овуляция и может наступить беременность. У некоторых больных появляются менструации и нормализуется уровень гонадотропных гормонов в отсутствие заместительной гормональной терапии. Риск пороков развития у потомства больных повышен. Женщин с синдромом Тернера предупреждают о риске самопроизвольного аборта и преждевременной менопаузы, а при подозрении на беременность предлагают провести пренатальную диагностику.

2.Трисомия по X­хромосоме (47,ХХХ) встречается у новорожденных девочек с частотой 1:1000; редко диагностируется в раннем детстве; взрослые больные обычно имеют нормальный женский фенотип.

а. Немногочисленные проспективные исследования показали, что у женщин с кариотипом 47,XXX наиболее часто отмечаются: высокий рост; умственная отсталость (как правило, легкой степени); позднее развитие речи; эпилепсия; дисменорея; бесплодие. Риск рождения ребенка с трисомией по X­хромосоме повышен у пожилых матерей. Для фертильных женщин с кариотипом 47,XXX риск рождения ребенка с таким же кариотипом невелик. По­ видимому, существует защитный механизм, предотвращающий образование или выживание анеуплоидных гамет или зигот.

б. При полисомии X­хромосомы с числом X­хромосом более трех (например, 48,ХХХХ, 49,ХХХХХ) высока вероятность тяжелой умственной отсталости, нарушения пропорций лица, пороков развития скелета или внутренних органов. Синдромы такого рода встречаются редко и обычно имеют спорадический характер.

3.Синдром Клайнфельтера — это клиническое проявление полисомии по X­хромосоме у мужчин (распространенность около 1:500). Чаще всего наблюдается кариотип 47,XXY (классический вариант синдрома), но встречаются и более редкие кариотипы: 48,XXXY; 49,XXXXY; 48,XXYY; 49,XXXYY. Наличие в кариотипе не менее двух X­хромосом и одной Y­хромосомы — самая распространенная причина первичного гипогонадизма у мужчин.

а. Примерно у 10% больных с синдромом Клайнфельтера наблюдается мозаицизм 46,XY/47,XXY. Поскольку в формировании фенотипа участвует клон клеток с нормальным кариотипом, больные с мозаицизмом 46,XY/47,XXY могут иметь нормально развитые половые железы и быть фертильными. Добавочная X­хромосома в 60% случаев наследуется от матери, особенно при поздней беременности. Риск наследования отцовской X­хромосомы не зависит от возраста отца.

б. Для синдрома Клайнфельтера характерен фенотипический полиморфизм. Наиболее частые признаки:

высокорослость, непропорционально длинные ноги, евнухоидное телосложение, маленькие яички (длинная ось < 2 см). Производные вольфова протока формируются нормально. В детском возрасте нарушения развития яичек незаметны и могут не выявляться даже при биопсии. Эти нарушения обнаруживают в пубертатном периоде и позднее. В типичных случаях при биопсии яичка у взрослых находят гиалиноз извитых семенных канальцев, гиперплазию клеток Лейдига, уменьшение численности или отсутствие клеток Сертоли; сперматогенез отсутствует. Больные, как правило, бесплодны (даже если есть признаки сперматогенеза). Формирование вторичных половых признаков обычно нарушено: оволосение лица и подмышечных впадин скудное или отсутствует; наблюдается гинекомастия; отложение жира и рост волос на лобке по женскому типу. Как правило, психическое развитие задерживается, но у взрослых нарушения интеллекта незначительны. Нередко встречаются нарушения поведения, эпилептическая активность на ЭЭГ, эпилептические припадки. Сопутствующие заболевания: рак молочной железы, сахарный диабет, болезни щитовидной железы, ХОЗЛ.

в. Способы лечения бесплодия при синдроме Клайнфельтера пока не разработаны. Заместительную терапию тестостероном обычно начинают с 11—14 лет; при дефиците андрогенов она существенно ускоряет формирование вторичных половых признаков. У взрослых больных на фоне лечения тестостероном повышается половое влечение. При гинекомастии может потребоваться хирургическое вмешательство. Психотерапия способствует социальной адаптации больных с синдромом Клайнфельтера и больных с другими аномалиями половых хромосом.

4. Кариотип 47,XYY. Этот вариант анеуплоидии наименее изучен, привлекает внимание врачей и возбуждает интерес широкой публики.

а. Эта хромосомная аномалия встречается у мужчин с частотой 1:800 и редко проявляется в детском возрасте. Взрослые носители кариотипа 47,XYY в большей части случаев имеют нормальный мужской фенотип. Добавочная (отцовская) Y­хромосома появляется чаще всего в результате нерасхождения хроматид во 2­м делении мейоза. Возраст отца не является фактором риска.

б. Для носителей кариотипа 47,XYY характерен высокий рост; пубертатное ускорение роста наступает раньше и продолжается дольше, чем обычно. Часто встречаются мелкие пороки развития; связь кариотипа 47,XYY с крупными пороками развития не доказана. Иногда наблюдаются изменения ЭКГ, шаровидные или абсцедирующие угри и варикозное расширение вен, однако повышенный риск возникновения этих расстройств у лиц с кариотипом 47,XYY не подтвержден. Умственное развитие в пределах нормы, но речевое развитие задерживается. Нередко подростки и

21

мужчины с кариотипом 47,XYY очень агрессивны, склонны к преступным действиям и плохо адаптируются к жизни в обществе. У большинства развитие и функции половых желез нормальные, однако известны случаи недоразвития яичек, бесплодия или пониженной фертильности.

в. Лечение не требуется. Если кариотип 47,XYY обнаружен в ходе пренатального исследования или у ребенка в препубертатном периоде, нужно правдиво и подробно проконсультировать родителей. Взрослый мужчина, у которого впервые выявлен кариотип 47,XYY, нуждается в психологической поддержке; могут потребоваться медико­ генетические консультации. Супружеским парам, в которых мужчина несет кариотип 47,XYY, рекомендуют провести пренатальную диагностику, хотя в таких семьях дети обычно имеют нормальный кариотип.

VI. Моногенные болезни

А. Общие сведения. Некоторые моногенные болезни, сопровождающиеся эндокринными нарушениями, перечислены в табл. 4.2. Эти болезни характеризуются значительным фенотипическим и генетическим полиморфизмом. Фенотипический полиморфизм обусловлен тем, что на экспрессию дефектного гена (т. е. на формирование клинической картины) влияют факторы окружающей среды и сопутствующие хромосомные или полигенные болезни. Поэтому при одном и том же генетическом дефекте возможны разные клинические варианты болезни. Генетический полиморфизм заключается в том, что одно и то же заболевание может быть обусловлено дефектами разных одиночных генов. Так, гипопитуитаризм может наследоваться аутосомно­рецессивно или рецессивно, сцепленно с X­хромосомой, а изолированный дефицит СТГ — аутосомно­рецессивно или аутосомно­ доминантно. Наиболее яркие примеры генетически полиморфных болезней — инсулинозависимый и инсулинонезависимый сахарный диабет. Показано, что предрасположенность к инсулинозависимому сахарному диабету связана с дефектами генов HLA и наследуется в соответствии с законами Менделя, однако роль этих дефектов в патогенезе инсулинозависимого сахарного диабета не выяснена. Инсулинонезависимый сахарный диабет в большей части случаев наследуется аутосомно­рецессивно, но юношеский инсулинонезависимый сахарный диабет (MODY) наследуется только аутосомно­доминантно. В последнее время эндокринологи склоняются к мнению о том, что инсулинозависимый и инсулинонезависимый сахарный диабет не являются самостоятельными нозологическими единицами, а представляют собой гетерогенные группы болезней со сходной клинической картиной. Внутри каждой группы могут встречаться как моногенные, так и полигенные формы болезни с доминантным или рецессивным типом наследования.

1.Хромосомы и составляющие их гены — парные структуры. В одном и том же локусе (сублокусе) гомологичных хромосом находятся аллели одного и того же гена. Аллель — это одно из возможных структурных состояний гена. Новые аллели возникают, как правило, в результате мутаций; некоторые мутации приводят к развитию моногенных болезней. Если в гомологичных хромосомах присутствуют идентичные аллели какого­либо гена, то организм является гомозиготным по данному гену; в 1­м поколении потомков гомозиготных организмов не происходит расщепления признаков, определяемых данным геном. Если в гомологичных хромосомах присутствуют разные аллели одного гена, то организм является гетерозиготным; в 1­м поколении потомков наблюдается расщепление признаков. Мужчины с кариотипом 46,XY являются гемизиготными по генам, локализованным на X­ хромосоме.

2.Ген считается доминантным, если для проявления признака у гетерозиготного организма достаточно одного аллеля, и рецессивным, если для проявления признака требуются оба аллеля. Кодоминантность — совместное участие обоих аллелей в формировании признака у гетерозиготного организма. Примеры кодоминантности: взаимодействие аллелей групп крови AB0; наследование серповидноклеточной анемии. В последнем случае кодоминантными являются аллели S (аномальный гемоглобин) и A (нормальный гемоглобин); у гетерозигот SA болезнь в нормальных условиях не проявляется, у гомозигот SS развивается полная форма болезни. Таким образом, полная форма серповидноклеточной анемии — рецессивный признак.

3.Ген может локализоваться на аутосоме или на половых хромосомах. От локализации гена зависит тип наследования (аутосомный или сцепленный с полом). Практически все заболевания, сцепленные с полом, обусловлены дефектами генов, локализованных на X­хромосоме. Предполагают, что на Y­хромосоме (в Yp и проксимальной части Yq) может находиться 150—250 генов, хотя пока картированы лишь немногие из них.

Б. Аутосомно­доминантные болезни

1.Известно более 3700 таких болезней. Как правило, они обусловлены дефектами структурных белков или нарушениями регуляции экспрессии генов.

2.Эти болезни поражают мужчин и женщин с одинаковой частотой. Исключение составляют аутосомные дефекты, наследование которых зависит от пола. Так, синдромы Опица и Опица—Фриаса встречаются главным образом у мужчин и распознаются по наличию гипоспадии. Алопеция считается доминантным признаком, но проявляется преимущественно у мужчин (а у женщин наблюдается при нарушениях метаболизма стероидных гормонов, например при избытке тестостерона).

3.Для аутосомно­доминантных болезней характерен фенотипический полиморфизм (даже внутри одной семьи). Полиморфизм зависит от пенетрантности и экспрессивности аллеля. Пенетрантностью аллеля называют частоту его проявления в популяции. Экспрессивностью аллеля называют выраженность его проявления у одной особи. При полной пенетрантности аллеля признак наблюдается у всех особей популяции. При неполной пенетрантности признак наблюдается не у всех особей. Организм, несущий дефектный аллель с низкой экспрессивностью, может иметь нормальный фенотип. При неполной пенетрантности или низкой экспрессивности аллель «теряется» в одном или нескольких поколениях и может быть принят за новую мутацию при последующем проявлении.

4.Мутация доминантного гена в половых клетках проявляется, как правило, уже в первом поколении потомков. Поэтому вновь возникающие мутации считаются основной причиной аутосомно­доминантных болезней. Показано,

22

что риск некоторых болезней этой группы повышен у детей пожилых отцов. Таким образом, возраст отца является фактором, предрасполагающим к возникновению мутаций доминантных генов.

5.Болезнь, обусловленная дефектом доминантного гена с нормальной экспрессивностью, обычно проявляется во всех поколениях одной семьи. Исключение составляют случаи, когда мутация доминантного гена летальна или существенно снижает фертильность (как за счет нарушения образования гамет, так и за счет снижения выживаемости плода). Вероятность наследования дефектного гена ребенком составляет:

а. 100%, если хотя бы один из родителей гомозиготен по доминантному гену. б. 75%, если оба родителя гетерозиготны.

в. 50%, если один родитель гетерозиготен, а второй гомозиготен по рецессивному гену.

Наследование гена аутосомно­доминантной болезни не зависит от пола ребенка и тяжести болезни у родителя. Нельзя прогнозировать тяжесть болезни у ребенка по фенотипу родителя. У здоровых родителей, уже имеющих одного ребенка с аутосомно­доминантным заболеванием, повторный риск рождения ребенка с тем же заболеванием низок.

6.Гиперплазия и неоплазия эндокринных желез, подобно другим семейным опухолевым болезням, обычно наследуется аутосомно­доминантно. Примеры: синдромы МЭН типа I, IIa и IIb (см. гл. 44 и гл. 45); факоматоз; синдром Горлина—Гольца (базальноклеточный невус).

В. Аутосомно­рецессивные болезни. Известно более 1600 таких болезней. Поскольку экспрессия рецессивного аллеля в присутствии нормального аллеля невозможна, больные всегда являются гомозиготными по рецессивному аллелю. Если болезнь определяется экспрессией двух разных генов, детерминирующих один и тот же признак, больной может быть дигетерозиготен по двум рецессивным аллелям. Летальные рецессивные гены редко встречаются

вприродных популяциях.

1.Аутосомно­рецессивные болезни чаще всего обусловлены дефектами ферментов, реже — дефектами структурных белков. Именно поэтому многие врожденные нарушения обмена веществ попадают в эту группу болезней.

2.Эти болезни поражают мужчин и женщин с одинаковой частотой. Исключение составляют аутосомные дефекты, наследование которых зависит от пола.

3.Для рецессивных генов характерна полная пенетрантность и высокая экспрессивность. Фенотипический полиморфизм выражен в меньшей степени, чем при аутосомно­доминантном наследовании.

4.Проявление аутосомно­рецессивного заболевания у ребенка здоровых родителей может быть следствием

вновь появившейся мутации рецессивного аллеля. Подтвердить это можно только путем молекулярно­ генетического исследования хромосом родителей. Если такое исследование недоступно, оба родителя считаются

гетерозиготами.

5.Болезнь, обусловленная рецессивным генетическим дефектом, может не проявляться во всех поколениях одной семьи (родители и дети пробанда часто здоровы). Вероятность аутосомно­рецессивной болезни у ребенка составляет:

а. 100%, если оба родителя гомозиготны по рецессивному гену;

б. 50%, если один родитель гомозиготен, а второй гетерозиготен по рецессивному гену; в. 25%, если оба родителя гетерозиготны по рецессивному гену.

г. Повторный риск рождения больного ребенка у гетерозиготных родителей также составляет 25%. Носителями рецессивного аллеля являются примерно две трети здоровых детей таких родителей. Вероятность наличия у обоих родителей одного и того же рецессивного аллеля возрастает при браках между родственниками (особенно при кровнородственных браках). У супружеских пар, в которых один родитель с неизвестным генотипом здоров, а второй является гетерозиготой, риск рождения больного ребенка невелик. Однако риск значительно возрастает, если брак близкородственный или если мутантный рецессивный ген сильно распространен среди населения (например, в случае муковисцидоза или фенилкетонурии).

6.Большинство эндокринных болезней, связанных с дефицитом гормонов, врожденные нарушения метаболизма белков и синтеза гликогена, а также лизосомные болезни накопления наследуются аутосомно­рецессивно. Наследственные нарушения биосинтеза тиреоидных гормонов и различные формы врожденной гиперплазии коры надпочечников — примеры аутосомно­рецессивных болезней, при которых гиперплазия эндокринных желез развивается вторично (вследствие нарушения механизмов отрицательной обратной связи). Успешность лечения аутосомно­рецессивных болезней зависит от точности диагноза. Для многих болезней этой группы разработаны молекулярно­генетические пробы на гетерозиготность (носительство мутантных генов) и методы пренатальной диагностики.

Г. Болезни, сцепленные с полом, в подавляющем большинстве случаев обусловлены мутациями генов на X­ хромосоме, поскольку Y­хромосома несет небольшое число генов. С Y­хромосомой сцеплены некоторые нарушения половой дифференцировки. На Yp1a локализуется ген SRY, кодирующий фактор развития яичка. Этот ген клонирован; он содержит 900 нуклеотидов и характеризуется высоким консерватизмом у разных млекопитающих. Мутации гена SRY изменяют генетический пол и нарушают формирование гонадного пола (см. гл. 19, п. I). Описано более 370 болезней, сцепленных (или предположительно сцепленных) с X­хромосомой. Тяжесть заболевания зависит от пола. Полные формы болезни проявляются преимущественно у мужчин, поскольку они гемизиготны по генам, локализованным на X­хромосоме. Если мутация затрагивает рецессивный сцепленный с X­хромосомой ген (XR­ болезнь), то гетерозиготные женщины здоровы, но являются носительницами гена (а гомозиготы в большинстве случаев летальны). Если мутация затрагивает доминантный сцепленный с X­хромосомой ген (XD­болезнь), то у гетерозиготных женщин болезнь проявляется в легкой форме (а гомозиготы летальны). Важнейшее свойство болезней, сцепленных с X­хромосомой, — невозможность их передачи от отца к сыну (поскольку сын наследует Y­, а не X­хромосому отца).

23

1.Тяжесть XR­болезней меняется в широких пределах: от генетических леталей (например, мужское бесплодие при синдроме Леша—Найхана) до сравнительно легких нарушений (например, некоторые формы алопеции у мужчин). Генетические летали в одной трети случаев возникают в результате новой мутации, что осложняет медико­ генетическое консультирование женщин, не имеющих в семейном анамнезе явных случаев заболевания. XR­болезнь может быть обусловлена рецессивным геном, летальным в гомозиготном или гемизиготном состоянии. Если локализация такого гена на X­хромосоме точно не доказана (цитогенетическими, биохимическими или молекулярно­ биологическими методами), то XR­болезнь нельзя отличить от аутосомно­доминантной болезни, наследование которой зависит от пола. Например, тестикулярную феминизацию принято считать XR­болезнью, но ее сцепление с X­хромосомой не подтверждено.

В потомстве гетерозиготной женщины (носитель XR­дефекта) и здорового мужчины 50% дочерей — носительницы, а 50% сыновей — больные. У женщины с нормальным генотипом и фертильного мужчины с XR­ болезнью все дочери — носительницы, а все сыновья здоровы. Примеры эндокринных XR­болезней: X­сцепленная адренолейкодистрофия (пероксисомное нарушение, для которого характерно чрезвычайное разнообразие клинических форм), врожденный идиопатический гипопитуитаризм, редкие формы нефрогенного несахарного диабета, редкие формы изолированного идиопатического гипопаратиреоза, врожденная гипоплазия надпочечников.

2.XD­болезни встречаются реже, чем XR­болезни, и часто приводят к гибели гемизиготных плодов мужского пола. Предполагают, что болезни, при которых повышена частота самопроизвольных абортов и снижена рождаемость мальчиков (например, синдром Франческетти—Ядассона и очаговая мезоэктодермальная дисплазия), обусловлены именно XD­дефектами. Гомозиготная женщина с нелетальным XD­дефектом передает XD­аллель всем детям; гетерозиготная женщина передает аллель половине детей обоего пола; гемизиготный мужчина передает аллель всем дочерям, но не сыновьям. Поэтому в семьях с нелетальными XD­дефектами преобладают больные женщины. Примеры эндокринных XD­болезней: нефрогенный несахарный диабет, некоторые варианты псевдогипопаратиреоза.

3.Для некоторых болезней, сцепленных с X­хромосомой, разработаны методы лечения и пренатальной диагностики, а также пробы на гетерозиготность (носительство мутантных генов). Если точно определить генетический дефект невозможно (например, из­за отсутствия необходимых молекулярных зондов), то пренатальная диагностика ограничивается определением пола будущего ребенка. Если это мальчик, а родители относятся к группе риска XR­болезни, то их предупреждают о том, что вероятность рождения больного мальчика равна 50%. Семья должна принять решение о прерывании или сохранении беременности.

VII. Полигенные болезни

А. В некоторых семьях встречаются болезни, наследование которых отличается от наследования хромосомных или моногенных болезней. Эти болезни называют полигенными, или мультифакториальными. Основные сведения о природе полигенных болезней были получены в популяционных исследованиях и с помощью близнецового метода. Оказалось, что конкордантность однояйцовых близнецов по проявлению полигенных болезней и семейный повторный риск таких болезней выше, чем следовало бы ожидать при их случайном распределении, но ниже, чем должно было бы быть при их менделевском наследовании (даже при условии неполной пенетрантности или низкой экспрессивности генетического дефекта). Разработана математическая модель порогового наследования, которая предсказывает, что два или более независимых гена (неаллельных и несцепленных) могут взаимодействовать неаддитивным образом, создавая генетическую основу (предрасположенность) для проявления определенного признака. Признак проявляется, когда взаимодействие предрасполагающего генотипа с факторами окружающей среды достигает некоторого порогового состояния. Хотя само проявление признака подчиняется закону «все или ничего», степень его проявления может меняться в широких пределах (из­за влияний других генетических факторов и факторов окружающей среды или тех и других вместе).

1.При полигенном наследовании часто наблюдается неравномерное распределение признака между полами.

2.Повторный риск полигенной болезни зависит от пола, тяжести болезни, степени генетической предрасположенности (различающейся в разных семьях), частоты болезни в данной семье, распространенности болезни среди населения.

Б. Доказано, что некоторые распространенные пороки развития — расщелина верхней губы, расщелина верхней губы в сочетании с расщелиной твердого неба, изолированная расщелина твердого неба, миеломенингоцеле в сочетании с анэнцефалией — имеют полигенную природу. Менее ясна этиология септооптической дисплазии, голопрозэнцефалии, синдрома каудальной дисплазии, а также дисгенезии щитовидной железы. Эти пороки обычно возникают спорадически (в семейном анамнезе нет указаний на какие­либо наследственные болезни); их повторный риск меньше, чем для полигенных пороков развития.

В. Известны полигенные болезни с высокой частотой встречаемости в отдельных семьях, в частности — аутоиммунные эндокринные болезни. В таких семьях необходимо детально обследовать ближайших родственников пробанда. Пример — аутоиммунные заболевания щитовидной железы. Маркерами аутоиммунного поражения тироцитов служат антитиреоидные аутоантитела. Они присутствуют в сыворотке больных с диффузным токсическим зобом или хроническим лимфоцитарным тиреоидитом, но могут выявляться и у родственников без клинических признаков болезни. Наличие аутоантител у здорового родственника свидетельствует о высоком риске болезни.

Г. Врожденные эндокринные болезни, обусловленные факторами внешней среды. Заражение женщины вирусом кори или краснухи в I триместре беременности значительно повышает риск гипопитуитаризма, изолированного дефицита СТГ, гипотиреоза и инсулинозависимого сахарного диабета у будущего ребенка. Прием гидантоинов (например, фенитоина) может вызвать нарушения половой дифференцировки у плода (недоразвитие наружных половых органов или наружные половые органы промежуточного типа). Воздействие гидантоинов, ретиноидов и алкоголя на плод часто приводит к пре­ и постнатальной задержке роста.

24

Д. Врожденные болезни, обусловленные эндокринными факторами. Эндокринные и метаболические расстройства у беременных снижают жизнеспособность плода и вызывают пороки развития в эмбриональном и неонатальном периодах. К числу таких расстройств относятся гипопаратиреоз, гипотиреоз и тиреотоксикоз, гипо­ и гиперфункция надпочечников. Инсулинозависимый сахарный диабет у беременной является причиной самопроизвольных абортов и существенно повышает риск больших пороков развития (наиболее часто встречаются дефекты развития сердца и ЦНС). На развитие плода и новорожденного влияют многие лекарственные средства, действующие на эндокринную систему, в том числе половые гормоны и антитиреоидные средства (йодиды, 131I, пропилтиоурацил, тиамазол).

VIII. Особые варианты наследования

А. Мозаицизм. Хромосомные аберрации и мутации одиночных генов могут локализоваться не во всех клетках организма, а только в отдельных клетках или клеточных популяциях. Если мутации возникают только в первичных половых клетках, говорят о гонадном мозаицизме. При гонадном мозаицизме у родителей менделевское наследование нарушается: не все потомки наследуют мутацию. Мутации в соматических клетках нередко случаются на ранних этапах эмбриогенеза. В таких случаях мутации могут локализоваться в тканях, происходящих из одного зародышевого листка, или в отдельных клонах клеток всех тканей организма. Формирование фенотипа у больных с мозаицизмом зависит от числа и распределения клонов клеток, несущих генетический дефект.

1.Инактивация X­хромосомы происходит на самых ранних стадиях эмбриогенеза и обеспечивает компенсацию дозы гена для большинства генов, локализованных на X­хромосоме. У женщин, гетерозиготных по аллелям X­ хромосомы, имеет место «физиологический мозаицизм»: экспрессия всех генов, локализованных на X­хромосоме, характеризуется мозаичностью (исключая гены, не подвергшиеся инактивации).

2.Хромосомный мозаицизм очень часто встречается у больных с аномалиями половых хромосом. Как правило, клиническая картина при мозаицизме выражена не так ярко, как у лиц с полной формой болезни. Признаки хромосомного мозаицизма: асимметрия туловища или конечностей, неравномерная пигментация кожи. Эти признаки наиболее характерны для больных с мозаицизмом с X­аутосомными транслокациями. Для подтверждения диагноза мозаицизма исследуют культуры фибробластов больных. Мозаицизм у матери может влиять на развитие плода. Например, некоторые случаи внутриутробной задержки развития плода с нормальным кариотипом обусловлены частичным мозаицизмом плаценты.

3.У больных с мозаицизмом с мутацией одиночного гена может наблюдаться неоднородное распределение дефекта (пример — очаговый или сегментарный нейрофиброматоз). Если мутация доминантного гена происходит в одном из клонов первичных половых клеток родителей (гонадный мозаицизм), то она может проявиться у ребенка. Этим объясняются некоторые случаи рождения детей с моногенными болезнями от здоровых родителей.

Б. При однородительской дисомии обе гомологичные хромосомы происходят от одного родителя (т. е. хромосома другого родителя не наследуется). Возможный механизм дисомии — элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы.

1.Однородительская дисомия была описана при муковисцидозе, когда оба мутантных аллеля наследовались от одного родителя. В таких случаях дисомия имитирует аутосомно­рецессивное наследование.

2.У 20—30% больных с синдромом Прадера—Вилли, имеющих по данным цитогенетического исследования нормальный кариотип, с помощью молекулярно­биологических методов обнаруживается дисомия материнской 15­

йхромосомы. Отцовская 15­я хромосома у таких больных отсутствует.

3.Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития, умственной отсталости и микроцефалии. Эти предположения пока не подтверждены молекулярно­биологическими исследованиями.

В. Геномный импринтинг. Изменения одиночных генов или целых районов хромосом родителей при мейозе могут приводить к появлению гамет с генетическими дефектами. В таких случаях фенотипическое проявление дефекта у ребенка зависит от того, какая именно гамета участвует в образовании зиготы.

1.Характер проявления аутосомно­доминантных болезней зависит от происхождения дефектного аллеля. Например, ювенильная форма болезни Гентингтона наблюдается только у детей больных отцов, а наследственная атрофическая миотония — только у детей больных матерей.

2.Импринтинг наблюдается у многих больных с хромосомными делециями. При синдроме Прадера—Вилли

всегда обнаруживается делеция отцовской 15­й хромосомы 15q11—13. Делеция этого же района материнской 15­ й хромосомы обусловливает развитие синдрома Эйнджелмена (комплекс врожденных психических расстройств). Синдром Эйнджелмена легко отличим от синдрома Прадера—Вилли (см. гл. 4, п. V.А.4.а).

Г. Митохондриальное наследование. Дефекты мтДНК лежат в основе некоторых редких болезней. Частота таких болезней в разных популяциях различается; они поражают детей обоего пола, но всегда передаются через материнские гаметы. Примеры: наследственная атрофия зрительных нервов (синдром Лебера), митохондриальная энцефаломиопатия, сахарный диабет с митохондриальным наследованием.

Пренатальная диагностика

IX. Общие сведения. Современные методы пренатальной диагностики выявляют практически любые хромосомные аномалии и многие дефекты одиночных генов. Исследование ворсин хориона и амниоцентез на ранних сроках беременности позволяют получить клетки плода в конце I — начале II триместра. Эти исследования показаны при высоком риске передачи генетического дефекта, который может быть диагностирован цитогенетическим, биохимическим или молекулярно­биологическим методом. Для оценки развития плода (его морфологии и показателей роста) все шире применяют УЗИ. При амниоцентезе, проводимом под контролем УЗИ,

25

риск тяжелых осложнений не превышает 0,5%. Риск осложнений при исследовании ворсин хориона и амниоцентезе на ранних сроках беременности не намного выше (если врач опытный).

X. Показания к амниоцентезу

Хотя каждое медицинское учреждение обычно разрабатывает собственную программу пренатальной диагностики, общепринятыми показаниями являются:

А. Возраст женщины 35 лет.

Б. Беременность у женщины, уже имеющей ребенка с хромосомной болезнью.

В. Хотя бы один из родителей — носитель сбалансированной хромосомной перестройки. Г. Хромосомная болезнь хотя бы у одного из родителей.

Д. В семейном анамнезе есть указания на нарушения мейоза.

Е. Оба родителя — гетерозиготы по аллелю аутосомно­рецессивной болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно­биологическим методом.

Ж. У одного из родителей — аутосомно­доминантная болезнь, которую можно диагностировать указанными методами.

З. Мать — носитель гена сцепленной с X­хромосомой болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно­биологическим методом.

И. Мать — носитель гена сцепленной с X­хромосомой болезни, которую нельзя диагностировать указанными методами. В этом случае необходимо определить пол плода.

К. Повторные самопроизвольные аборты (не менее трех случаев) или рождение ребенка с множественными врожденными аномалиями неизвестной природы (в тех случаях, когда нет времени на обследование родителей).

Л. В семейном анамнезе имеются указания на наличие дефектов нервной трубки.

М. В сыворотке беременной обнаружен неконъюгированный эстриол либо ненормальное содержание альфа­ фетопротеина или бета­субъединицы ХГ.

Литература

1.Buyse ML. Birth Defects Encyclopedia. Cambridge: Blackwell, 1990.

2.Emery A, Rimoin D. Principles and Practice of Medical Genetics (2nd ed). New York: Churchill Livingstone, 1990.

3.Gorlin RJ, et al. Syndromes of the Head and Neck (3rd ed). New York: Oxford University Press, 1990.

4.Hall JG, et al. Handbook of Normal Physical Measurements. New York: Oxford University Press, 1989.

5.Jones KL. Smith's Recognizable Patterns of Human Malformation (4th ed). In M Markowitz (ed.), Major Problems in Clinical Pediatrics (vol VII). Philadelphia: Saunders, 1988.

6.McKusick V. Mendelian Inheritance in Man (10th ed.). Baltimore: Johns Hopkins University Press, 1992.

7.Rimoin DL. Disorders of the Endocrine Glands. In AA Dietz (ed.), Genetic Disease: Diagnosis and Treatment. Proceedings of the Fifth Arnold O. Beckman Conference in Clinical Chemistry. Monterey, CA: The Association for Clinical Chemistry, 1983.

8.Taybi H, Lachman RS. Radiology of Syndromes, Metabolic Disorders, and Skeletal Dysplasias (3rd ed). Chicago: Yearbook, 1990.

9.Vogel F, Motulsky AG. Human Genetics: Problems and Approaches (2nd ed). New York: Springer, 1986.

10.Wiedmann H­R, et al. Atlas of Clinical Syndromes—A Visual Aid to Diagnosis (2nd ed). St. Louis: Mosby, 1989.

11.Wynne­Davis R, Hall CM, Apley AG. Atlas of Skeletal Dysplasias. Edinburgh: Churchill Livingstone, 1985.

***********************************

26

Глава 5. Молекулярная биология и клиническая эндокринология

У. Чин

Методы молекулярной биологии и генной инженерии произвели революцию в исследованиях структуры и функций клеток и позволили расшифровать основные механизмы наследственности. Стремительное накопление и осмысление данных о механизмах биосинтеза макромолекул и их роли в физиологии клетки способствовало прогрессу биохимии и экспериментальной эндокринологии. Успехи в этих областях знаний стали основой достижений современной клинической эндокринологии.

I. Передача информации. Вся генетическая информация соматической клетки человека закодирована 3 миллиардами пар нуклеотидов ДНК. Геном человека (т. е. совокупность генов гаплоидного набора хромосом) содержит около 100 000 генов, распределенных между 23 хромосомами. Информация переносится с ДНК на мРНК в процессе транскрипции, происходящем в ядре; информация от мРНК передается полипептидной цепи в процессе

трансляции в цитоплазме (см. рис. 5.1). Дальнейшие посттрансляционные модификации полипептидной цепи

приводят к образованию зрелых, функционально активных белков, таких, как пептидные гормоны, рецепторы гормонов, структурные белки клеточных мембран, белки цитоскелета.

II. Экспрессия гена

А. Каждый ген — это транскрипционная единица, содержащая структурную и регуляторную области (см. рис. 5.2). Структурная область включает участки, кодирующие последовательность аминокислот в полипептидной цепи (экзоны), и некодирующие участки (интроны). При транскрипции структурной области первоначально образуется транскрипт РНК (предшественник мРНК), содержащий как экзоны, так и интроны. Транскрипт РНК претерпевает процессинг — ряд превращений в ядре: к 5'­концу транскрипта присоединяется 7­метилгуанозин­ пирофосфат; к 3'­концу присоединяется полиаденилатный «хвост»; интроны выщепляются, а экзоны стыкуются друг с другом и образуют зрелую мРНК (последний процесс называют сплайсингом). Зрелая мРНК, поступающая из ядра в цитоплазму, — это последовательность нуклеотидов, кодирующая уникальную полипептидную цепь. Кодирующая последовательность мРНК ограничена нетранслируемыми 3'­ и 5'­последовательностями.

Б. Полипептид, кодируемый мРНК, — это молекула­предшественник, которая обычно подвергается процессингу. Это регулируемый многоэтапный процесс, включающий фосфорилирование или гликозилирование некоторых аминокислот, а также протеолитическое выщепление определенных участков полипептидной цепи (например, C­ пептида инсулина). Процессинг завершается образованием зрелого белка. Характерное свойство секретируемых белков (в том числе пептидных гормонов) — присутствие сигнального пептида на N­конце молекулы предшественника. Сигнальный пептид состоит из 20—30 аминокислот, многие из которых гидрофобны; он необходим для переноса предшественника из цитозоля в эндоплазматический ретикулум. В полости эндоплазматического ретикулума сигнальный пептид отщепляется, а молекула предшественника подвергается дальнейшим модификациям (например, гликозилированию) и поступает в аппарат Гольджи, где процессинг предшественника завершается, зрелый белок упаковывается в секреторные пузырьки и выводится во внеклеточное пространство. Присутствие различных молекул­предшественников на разных этапах процессинга является важнейшей особенностью биосинтеза почти всех белков. Физиологическая роль предшественников пока не выяснена, хотя понятно, что их многообразие создает предпосылки для изменчивости зрелого белка. Другой источник изменчивости белка — перестройки генома. Изменение хотя бы одного нуклеотида в гене может нарушить структуру или скорость биосинтеза зрелого белка либо его предшественников. Поэтому малейшие изменения ДНК могут быть причиной наследственных эндокринных и метаболических нарушений.

III. Регуляция экспрессии гена

А. Нуклеотидная последовательность структурной области гена транскрибируется только в присутствии регуляторной области (см. рис. 5.2). Регуляторная область, расположенная обычно на 5'­конце гена, контролирует уровень экспрессии гена, т. е. количество его продукта — мРНК. Регуляторная область включает несколько структурно­функциональных компонентов, в том числе — промотор и энхансер. Промотор состоит из 100— 150 нуклеотидов, начиная от точки инициации транскрипции в 5'­фланкирующей области, и содержит несколько коротких нуклеотидных последовательностей — цис­элементов. Цис­элементы отвечают за связывание регуляторных белков, кодируемых другими генами (такие регуляторные белки называют транс­факторами).

Б. Первым цис­элементом является ТАТА­бокс — последовательность, богатая тимином и аденином. ТАТА­бокс расположен на расстоянии 25—35 нуклеотидов от точки инициации транскрипции. Взаимодействие ТАТА­ связывающего регуляторного белка с ТАТА­боксом служит сигналом для присоединения РНК­полимеразы к промотору и для инициации транскрипции.

В. Второй цис­элемент промотора включает ЦААТ­бокс и участок Sp1. Эти последовательности взаимодействуют с разными транскрипционными факторами, контролирующими экспрессию гена.

Г. На разном расстоянии от промотора расположены энхансеры — нуклеотидные последовательности, регулирующие скорость транскрипции. Некоторые транс­факторы, связываясь с энхансерами, усиливают или подавляют транскрипцию. К числу таких транс­факторов относятся активированные цитоплазматические рецепторы стероидных и тиреоидных гормонов (см. гл. 23, п. II.В.1.в), а также фосфорилированные или дефосфорилированные белки­посредники, образующиеся при взаимодействии гормонов с мембранными рецепторами. Регуляторные элементы генома определяют тканевую специфичность механизмов гормональной регуляции.

IV. Генетические дефекты и эндокринные болезни

А. Многие эндокринные болезни обусловлены мутациями одиночных генов (например — заменой одного нуклеотида). Такие болезни называют моногенными. Главным звеном патогенеза может оказаться нарушение синтеза или транспорта гормона либо дефект рецептора или компонента, осуществляющего внутриклеточную передачу

27

сигнала гормона. В табл. 5.1 перечислены некоторые эндокринные болезни, обусловленные генетическими дефектами. Ниже детально рассмотрены два примера наследственных эндокринных болезней.

Б. Синдромы инсулинорезистентности обычно наследуются аутосомно­рецессивно и включают синдром инсулинорезистентности и acanthosis nigricans типа А и лепречаунизм. Эти болезни обусловлены мутациями гена рецептора инсулина. Точечные мутации в последовательности, кодирующей альфа­субъединицу рецептора, снижают стабильность мРНК рецептора и нарушают доставку зрелого рецептора к наружной клеточной мембране. В результате уменьшается общее число рецепторов на мембране. Точечные мутации в последовательности, кодирующей бета­ субъединицу, обычно понижают активность тирозинкиназы рецептора.

В. Генерализованная резистентность к тиреоидным гормонам — редкий синдром с аутосомно­доминантным наследованием (см. гл. 2, п. IV.Ж.2.а). Уровни свободных T4 и T3 повышены, но содержание ТТГ в сыворотке находится в пределах нормы или увеличено и регулируется тиролиберином. Как правило, генетический дефект — точечная мутация в последовательности, кодирующей гормонсвязывающий домен рецептора тиреоидных гормонов. Этот дефект приводит к ухудшению связывания гормона с рецептором и, соответственно, к снижению активности гормон­рецепторных комплексов.

V. Молекулярные основы патогенеза эндокринных опухолей

А. Молекулярно­биологические исследования позволили расшифровать многие механизмы онкогенеза, в том числе — механизмы развития гормонально­активных опухолей.

Б. Некоторые СТГ­секретирующие опухоли возникают вследствие мутаций генов G­белков. G­белки опосредуют передачу сигналов от мембранных рецепторов гормонов к внутриклеточным исполнительным системам. Например, субъединица Gsальфа стимулирует аденилатциклазу. В норме взаимодействие Gsальфа с аденилатциклазой происходит только после присоединения гормона к рецептору. Мутация в последовательности, кодирующей Gsальфа, приводит к образованию дефектной Gsальфа, которая функционирует как конститутивный нерегулируемый активатор аденилатциклазы. Постоянный высокий уровень активности аденилатциклазы стимулирует опухолевый рост СТГ­ секретирующих клеток, что приводит к гиперсекреции СТГ и к развитию акромегалии.

В. Доказано, что синдром МЭН типа I обусловлен дефектом одного из локусов 11q. Анализ полиморфизма длин рестрикционных фрагментов ДНК у членов семей с МЭН типа I позволит в ближайшем будущем идентифицировать мутантный ген.

VI. Рекомбинантные гормоны. Методы генной инженерии позволяют получать в промышленных количествах гормоны человека: инсулин, СТГ, ЛГ, ФСГ, ТТГ и их аналоги. Рекомбинантные гормоны широко применяются в экспериментальной и клинической эндокринологии.

VII. Основные направления исследований

А. Идентификация генов гормонов, генов рецепторов гормонов и генов других молекул, участвующих в гормональной регуляции функций организма.

Б. Изучение механизмов передачи сигналов гормонов.

В. Идентификация генетических дефектов, обусловливающих эндокринные болезни.

Г. Выявление молекулярно­генетических маркеров предрасположенности к эндокринным болезням. Д. Разработка методов прогнозирования и ранней диагностики эндокринных болезней.

Е. Разработка новых методов лечения эндокринных болезней (поиск блокаторов и стимуляторов секреции гормонов; генотерапия).

Литература

1.Antonarakis SE. Diagnosis of genetic disorders at the DNA level. New Engl J Med 320:153, 1989.

2.Beato M. Gene regulation by steroid hormones. Cell 56:335, 1989.

3.Chin WW. Biosynthesis and secretion of peptide hormones. In KL Becker (ed.), Principles and Practice of Endocrinology and Metabolism. Philadelphia: Lippincott, 1990. P. 14.

4.Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240:889, 1988.

5.Habener JF. Genetic control of hormone formation. In JD Wilson, DW Foster (eds), Williams Textbook of Endocrinology. Philadelphia: Saunders, 1992. P. 9.

6.Kahn CR, et al. Mechanism of action of hormones that act at the cell surface. In JD Wilson, DW Foster (eds), Williams Textbook of Endocrinology. Philadelphia: Saunders, 1992. Pp. 91.

7.Lazar MA, Chin WW. Nuclear thyroid hormone receptors. J Clin Invest 86:1777, 1990.

8.Lewin BM. Gene IV. New York: Wiley, 1990.

9.Maniatis T, et al. Regulation of inducible and tissue­specific gene expression. Science 236:1227, 1987.

10.Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence­specific DNA binding proteins. Science 245:371, 1989.

***********************************

28

Глава 6. Болезни аденогипофиза

Х. Карлсон

I. Гормоны аденогипофиза

А. Классификация, структура и функции

1. Семейство СТГ. К нему относятся СТГ и пролактин, а также гормон, образующийся в плаценте, — плацентарный лактоген. Все эти гормоны состоят из одной негликозилированной полипептидной цепи и характеризуются значительным сходством первичной структуры.

а. СТГ синтезируется в соматотропных клетках, имеет молекулярную массу 22 000 и содержит 191 аминокислоту. Физиологические эффекты СТГ принято разделять на прямые и непрямые. Прямые эффекты СТГ: стимуляция синтеза и секреции ИФР в печени и других органах и тканях, стимуляция липолиза в жировой ткани и стимуляция продукции глюкозы в печени. Непрямые эффекты СТГ — это его рост­стимулирующее и анаболическое действие. Эти эффекты опосредуются ИФР­I. Основным источником ИФР­I является печень. ИФР­I стимулирует рост кости, хряща и мягких тканей. Непрямые эффекты СТГ подавляются глюкокортикоидами.

б. Пролактин синтезируется в лактотропных клетках, имеет молекулярную массу 22 500 и содержит 198 аминокислот. Главная мишень пролактина — молочные железы. Пролактин стимулирует рост молочных желез во время беременности и лактацию после родов. Во время беременности лактогенный эффект пролактина блокируется эстрогенами и прогестероном. Рецепторы пролактина обнаружены в гипоталамусе, печени, яичках, яичниках, но действие пролактина на эти органы изучено недостаточно. Гиперпролактинемия угнетает гипоталамо­гипофизарно­ гонадную систему и является частой причиной бесплодия у женщин. Недавно показали, что рецепторы пролактина присутствуют на T­лимфоцитах и что пролактин влияет на иммунные реакции.

2. Семейство гликопротеидных гормонов включает аденогипофизарные гормоны ЛГ, ФСГ и ТТГ, а также плацентарный гормон ХГ. Эти гормоны состоят из двух сильно гликозилированных полипептидных цепей (субъединиц) — альфа и бета. У всех гормонов субъединицы альфа идентичны: они включают по 92 аминокислоты, расположенных в одинаковой последовательности. Напротив, последовательности аминокислот в субъединицах бета различаются. Именно эти различия определяют специфичность действия гликопротеидных гормонов на ткани­ мишени. Молекулярная масса ЛГ, ФСГ, ТТГ и ХГ неодинакова и зависит в первую очередь от количества углеводных остатков.

а. ЛГ и ФСГ синтезируются в гонадотропных клетках. У обоих гормонов субъединица бета включает 115 аминокислот, а молекулярная масса составляет соответственно 29 400 и 32 600. ЛГ и ФСГ регулируют синтез и секрецию половых гормонов и гаметогенез.

1)В яичниках ЛГ стимулирует овуляцию и секрецию прогестерона. Рецепторы ЛГ и ХГ присутствуют на клетках внешней оболочки и гранулярного слоя фолликулов и на интерстициальных клетках. ФСГ стимулирует секрецию эстрогенов, рост и созревание фолликулов. Рецепторы ФСГ имеются только на клетках гранулярного слоя.

2)В яичках ЛГ стимулирует секрецию тестостерона. Рецепторы ЛГ и ХГ присутствуют только на клетках Лейдига. ФСГ не влияет на синтез андрогенов, но необходим для сперматогенеза. Рецепторы ФСГ обнаружены только на клетках Сертоли.

б. ТТГ синтезируется в тиреотропных клетках, имеет молекулярную массу 30 500; субъединица бета включает 112 аминокислот. Основная роль ТТГ — стимуляция синтеза тиреоидных гормонов. ТТГ контролирует почти все этапы синтеза, в том числе — присоединение неорганического йода к тиреоглобулину и образование T3 и T4 из моно­

идийодтирозина.

3. Семейство производных проопиомеланокортина. Кортикотропные клетки аденогипофиза секретируют несколько гормонов: АКТГ, альфа­ и бета­МСГ, бета­ и гамма­липотропины, а также эндорфины. Все эти гормоны содержат гептапептид Мет­Глу­Гис­Фен­Арг­Трп­Гли и образуются из крупной молекулы­предшественника — проопиомеланокортина (молекулярная масса 31 000).

а. АКТГ имеет молекулярную массу 4500 и содержит 39 аминокислот. АКТГ стимулирует синтез гормонов в коре надпочечников, в первую очередь — синтез глюкокортикоидов в пучковой и сетчатой зонах. Выброс АКТГ из кортикотропных клеток или введение большой дозы АКТГ может вызвать кратковременный подъем уровня альдостерона. Еще один эффект АКТГ — стимуляция синтеза меланина в меланоцитах. По­видимому, это служит причиной гиперпигментации при синдроме Нельсона и первичной надпочечниковой недостаточности.

б. Функции других производных проопиомеланокортина изучены хуже. Установлено, что альфа­МСГ стимулирует синтез меланина в меланоцитах, а гамма­МСГ — синтез альдостерона в коре надпочечников. В опытах на культурах клеток коры надпочечников показали, что бета­липотропин стимулирует синтез кортикостероидов, причем эффект бета­липотропина опосредуется рецепторами АКТГ.

Б. Регуляция секреции гормонов аденогипофиза

1.Система обратной связи. ТТГ, АКТГ и оба гонадотропных гормона — ЛГ и ФСГ — стимулируют секрецию гормонов в эндокринных железах­мишенях. В свою очередь, гормоны желез­мишеней подавляют секрецию соответствующих аденогипофизарных гормонов. Например, повышение уровня кортизола в крови тормозит секрецию АКТГ. Такие же связи существуют между тиреоидными гормонами и ТТГ, между половыми и гонадотропными гормонами. Гормоны, подавляющие секрецию СТГ и пролактина, пока не обнаружены, хотя недавно было установлено, что ИФР­I тормозит секрецию СТГ.

2.Либерины и статины. Секреторная активность клеток аденогипофиза зависит не только от уровня гормонов эндокринных желез­мишеней. Важнейшую роль в регуляции секреции аденогипофизарных гормонов играет гипоталамус. В ядрах гипоталамуса образуются пептидные гормоны — либерины и статины, поступающие в воротную систему гипофиза:

29

а. Тиролиберин стимулирует секрецию ТТГ и пролактина. б. Гонадолиберин стимулирует секрецию ЛГ и ФСГ.

в. Кортиколиберин стимулирует секрецию АКТГ, МСГ и бета­липотропина. г. Соматолиберин стимулирует секрецию СТГ.

д. Соматостатин подавляет секрецию СТГ и, в меньшей степени, ТТГ.

е. Дофамин подавляет секрецию пролактина и, по­видимому, является главным физиологическим регулятором секреции этого гормона.

3.Гормоны периферических эндокринных желез могут подавлять не только секрецию соответствующих тропных гормонов аденогипофиза, но и секрецию либеринов гипоталамуса. Например, эстрогены подавляют как секрецию ЛГ и ФСГ, так и секрецию гонадолиберина.

II. Гипопитуитаризм

А. Этиология, патогенез и клиническая картина. Гипопитуитаризм может быть вызван заболеванием самого гипофиза или гипоталамуса (см. табл. 6.1). В обоих случаях снижение секреции гормонов аденогипофиза приводит к системным заболеваниям. Недостаток гормонов, действующих на периферические эндокринные железы, вызывает их гипофункцию. Так, дефицит ТТГ является причиной вторичного гипотиреоза, дефицит ЛГ и ФСГ приводит к вторичному гипогонадизму, дефицит АКТГ — к вторичной надпочечниковой недостаточности и гипопигментации. Дефицит пролактина проявляется нарушением лактации, а дефицит СТГ — задержкой роста и гипогликемией голодания у детей, низкорослостью и морщинами на лице у взрослых.

Б. Принципы лабораторной диагностики. Главное следствие гипопитуитаризма — это вторичная гипофункция периферических эндокринных желез. Поэтому диагностика гипопитуитаризма и дифференциальная диагностика первичной и вторичной гипофункции периферических эндокринных желез должна быть основана на одновременном определении уровней гормонов аденогипофиза и гормонов желез­мишеней. Критерий диагноза вторичной гипофункции коры надпочечников, щитовидной железы и половых желез: низкий уровень гормонов железы­ мишени на фоне низкого уровня соответствующего тропного гормона аденогипофиза. Например, низкий уровень ЛГ и ФСГ в сочетании с низким уровнем тестостерона или эстрогенов у больных с клиническими проявлениями гипогонадизма говорит о том, что это вторичный, а не первичный гипогонадизм. При оценке уровней аденогипофизарных гормонов нужно учитывать два обстоятельства:

1.Базальные концентрации этих гормонов в норме низкие, поэтому для их измерения следует использовать высокочувствительные методы РИА или ИФА.

2.Секреция всех аденогипофизарных гормонов характеризуется суточной периодичностью. Как правило, в дневные часы уровень гормонов низкий, а в ночные часы возрастает.

Наиболее информативны стимуляционные пробы. Они позволяют оценить сохранность гипоталамо­ гипофизарной системы, резерв аденогипофизарных гормонов и отличить первичную гипофункцию эндокринных желез­мишеней от вторичной. Эти пробы используют также в дифференциальной диагностике гипопитуитаризма гипоталамического и гипофизарного происхождения.

В. Стимуляционные пробы. Методики этих проб кратко описаны в табл. 6.2 и детально — в приложении А.

1.Оценка секреции СТГ. Применяют гипогликемическую пробу с инсулином, пробу с аргинином либо пробу с леводофой (в сочетании с пропранололом или без него). Инсулин, аргинин и леводофа стимулируют секрецию соматолиберина и подавляют секрецию соматостатина, поэтому в норме после воздействия этих веществ уровень СТГ

всыворотке возрастает как минимум до 10 нг/мл. При оценке результатов следует учитывать, что у взрослых уровень СТГ повышается во время сна, после еды, при стрессе и физических нагрузках. При гипотиреозе и ожирении реакция на инсулин, аргинин и леводофу обычно снижена. У здоровых мужчин и детей препубертатного возраста прирост уровня СТГ после стимуляции часто бывает незначительным; в таких случаях для усиления секреторной реакции за сутки перед пробой назначают конъюгированные эстрогены или диэтилстильбэстрол внутрь, 5 мг/сут в 2 приема. У 5—10% здоровых людей реакция на некоторые стимуляторы секреции СТГ отсутствует. Поэтому диагноз дефицита СТГ должен быть основан на результатах не менее чем двух разных проб.

2.Оценка секреции пролактина. Наиболее распространены проба с тиролиберином и проба с блокаторами дофаминовых рецепторов типа 2. Тиролиберин непосредственно стимулирует лактотропные клетки аденогипофиза, а

блокаторы дофаминовых рецепторов типа 2 (например, метоклопрамид) подавляют действие эндогенного дофамина — основного ингибитора секреции пролактина. В норме в любой из этих проб уровень пролактина в сыворотке возрастает как минимум в два раза, причем максимальная концентрация пролактина должна быть 12 нг/мл. У женщин реакция обычно выражена сильнее, чем у мужчин, поскольку секреция пролактина усиливается под влиянием эстрогенов. При гипопитуитаризме базальный уровень пролактина низкий и не повышается под влиянием тиролиберина и других стимулов. Напротив, при изолированных заболеваниях гипоталамуса базальный уровень пролактина высокий, поскольку отсутствует тоническое тормозящее действие дофамина на лактотропные

клетки. В таких случаях реакция на тиролиберин и другие стимулы может быть нормальной или ослабленной.

3. Оценка секреции ТТГ. С этой целью также применяют пробу с тиролиберином, который непосредственно стимулирует тиреотропные клетки. У больных с изолированными нарушениями функции гипофиза (например, после гипофизэктомии) базальный уровень ТТГ в сыворотке низок, а реакция на тиролиберин отсутствует или гораздо слабее, чем в норме. Напротив, при изолированных заболеваниях гипоталамуса базальный уровень ТТГ может быть низким, нормальным или слегка повышенным. У таких больных концентрация ТТГ после введения тиролиберина повышается до уровня, свойственного здоровым людям, но это повышение запаздывает на 30—60 мин по сравнению с нормой (см. гл. 29, п. V.Б.2). Такой результат дает основание диагностировать дефицит тиролиберина. У некоторых больных наблюдается парадоксальное сочетание гипотиреоза с нормальным или повышенным уровнем

30