Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

В-Л-Быков-Частная_Гистология_человека

.pdf
Скачиваний:
26224
Добавлен:
11.10.2016
Размер:
12 Mб
Скачать

Мозговое вещество образовано ветвящимися в анастомозирующими тяжами лимфоидной тони (мозговыми тяжами), между которыми располагаются соединительнотканные трабекулы и мозговые лимфатические синусы.

Мозговые тяжи являются В-зависимой зоной и содержат многочисленные плазматические клетки и (в менышем числе) В-лимфоциты и макрофаги. Плазматические клетки могут длительно находиться в тяжах и активно секретировать антитела в лимфу или поступать в нее, а далее - в кровоток.

Лимфатические синусы - система особых внутриорганных лимфатических сосудов в корковом и мозговом веществе, обеспечивающая медленный ток лимфы через узел, в процессе которого она очищается (примерно на 99%) от содержащиеся в ней частиц (с извлечением антигенного материала) и обогащается антителами, клетками лимфоидного ряда и макрофагами.

Направление лимфотока в лимфатическом узле: из приносящих сосудов лимфа последовательно попадает в субкапсулярный, промежуточный и мозговой синусы, имеющие сходное строение, откуда (в воротах узла) направляется в выносящие сосуды.

Субкапсулярный (краевой, маргинальный) синус служит первым фильтрационным барьером для лимфы, попадающей в лимфатический узел. Он занимает щелевидное пространство между капсулой узла и наружной корой.

Выстлан особыми плоскими береговыми клетками, которые одни исследователи считают эндотелиальными, в другие - уплощенными ретикулярными. Эта выстилка лишена базальной мембраны, непрерывна со стороны капсулы, и прерывиста со стороны узелков, с многочисленными межклеточными щелями и подлежащим слоем маргинальных макрофагов. В просвете синуса находится сеть отростчатых ретикулярных клеток и волокон (замедляющая ток лимфы) с фиксированными на них и блуждающими макрофагами; имеются также многочисленные лимфоциты, плазматические клетки.

Промежуточный синус служит продолжением субкапсулярного и располагается между трабекулами и лимфоидной тканью наружной и глубокой коры.

Мозговой синус продолжает промежуточный и лежит между трабекулами и мозговыми тяжами.

Клиническое значение лимфатических узлов обусловлено не только их непосредственной ролью в развитии иммунных реакций, но возможностью возникновения в них очагов инфекции (распространяющейся лимфогенно), а

также метастазов злокачественных опухолей. Множественное увеличение лимфатических узлов характерно для опухолей лимфоидной ткани.

СЕЛЕЗЕНКА

Селезенка - периферический и самый крупный орган иммунной системы,

располагающийся по ходу кровеносных сосудов. К ее основный функциям относятся.

1)участие в формировании гуморального и клеточного иммунитета, задержка антигенов, циркулирующих в крови;

2)разрушение старых и поврежденных эритроцитов и тромбоцитов;

3)депонирование крови и накопление тромбоцитов (до 1/3 общего их числа в организме).

Покрыта брюшиной и капсулой из плотной соединительной ткани, содержащей гладкомышечные клетки. От капсулы вглубь органа отходят трабекулы, анастомозирующие друг с другом. Паренхима (пульпа) включает два отдела с разными функциями: белую и красную пульпу (рис. 2-5).

Рис. 2-5. Селезенка. М - мезотелий, К - капсула, Т – трабекула, ЛУ - лимфатический узелок, ПАЛВ - периартериальное лимфатическое влагалище, ВС - венозные синусы, СТ - селезеночные тяжи.

Белая пульпа (около 20% объема органа) представлена лимфоидной тканью,

расположенной по ходу артерий, и включает (1) лимфатическим узелки, (2) периартериальные лимфатическим влагалища (ПАЛВ) и (3) маргинальную зону

(рис. 2-6). К ее функциям относят обеспечение: (а) улавливания из крови антигенов, (б) взаимодействия лимфоцитов с антигенами, антигенпредставляющими клетками и друг с другом, (в) начальных этапов антигензависимой пролиферации и дифференцировки.

Рис. 2-6. Схема строения и кровообращения селезенки. М - мезотелий, К - капсула, Т – трабекула, ЛУ - лимфатический узелок, ПАЛВ - периартериальное лимфатическое влагалище, М3 - маргинальная зона, ТА - трабекулярная артерия, ПА - пульларная артерия, ЦА - центральная артерия, МС - маргинальный синус, КА - кисточковые артериолы, ЭК - эллипсоидные капилляры, ВС - венозные синусы, ТВ - трабекулярная вена, СТ - селезеночные тяжи. Эллипсоидные капилляры открываются непосредственно в венозные синусы (закрытое кровообращение) или в селезеночные тяжи (открытое кровообращение), откуда форменные элементы поступают в венозные синусы (короткие стрелки).

(1) лимфатические узелки (фолликулы, мальпигиевы тельце)

располагаются по периферии ПАЛВ и по своей структурной и функциональной организации сходны с аналогичными образованиями в лимфатических узлах. Являются В-зависимой зоной селезенки.

(2)периартериальные лимфатические влагалище (ПАЛВ) окружают

центральные артерии, состоят из цилиндрических компактных скоплений лимфоидной ткани, содержащей лимфоциты, макрофаги, ретикулярные и

антиген-представляющие интердигитирующие клетки. Являются Т-зависимой

зоной селезенки.

(3)маргинальная зона располагается в виде тонкого слоя к периферии от ПАЛВ и узелков на границе белой и красной пульпы, рядом с маргинальным синусом и содержит лимфоциты (преимущественно В-клетки), ретикулярные клетки и макрофаги. В ее наружной части накапливаются незрелые плазматические клетки, мигрирующие в красную пульпу для дозревания.

Служит местом начального поступления в белую пульпу селезенки Т- и В-клеток

(направляющихся в дальнейшем в соответствующие зоны) н антигенов, которые здесь захватываются макрофагами.

Красная пульпа (около 75% объема органа) включает (1) венозные синусы и

(2) селезеночные или пульпарные тяжи (Бильрота). К ее функциям относятся: (а) депонирование зрелых форменных элементов крови; (б) контроль состояния

иразрушение старых и поврежденных эритроцитов и тромбоцитов; (в) фагоцитоз инородных частиц; (г) обеспечение дозревания лимфоидных клеток

ипревращения моноцитов в макрофаги.

(1)венозные синусы - тонкостенные анастомозирующие сосуды диаметром 12-50 мкм неправильной формы, образующие основную часть красной пульпы.

Выстланы эндотелиальными клетками необычной веретеновидной

(палочкообразной) формы с узкими (1-3 мкм) щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы. Снаружи эти клетки охвачены циркулярно идущими отростками ретикулярных клеток и ретикулярными волокнами; базальная мембрана имеется лишь в отдельных участках.

(2)селезеночные (пульпарные) тяжи (Бильрота) - скопления форменных элементов крови (эритроцитов, тромбоцитов, лейкоцитов), а также макрофагов

иплазматических клеток, лежащие в петлях ретикулярной ткани между синусами, в просвет которых они постоянно мигрируют. Старые, патологически измененные или поврежденные форменные элементы, (в первую очередь, эритроциты) с измененными маркерами и неспособные к миграции в синус,

целиком фагоцитируются и перевариваются макрофагами, которые в тяжах образуются

из моноцитов. Усиленное разрушение эритроцитов в селезенке может приводить к развитию анемии.

Кровообращение в селезенке обладает рядом особенностей, обеспечивающих выполнение ее функций (см. рис. 2-6). В ворота органа входит селезеночная артерия, ветви которой проникают в трабекулы (трабекулярные артерии) и далее - в пульпу (пульпарные артерии). В пульпе адвентиция такой артерии замешается оболочкой из лимфоидной ткани, и артерия получает название центральной. Центральная артерия - мелкая, мышечного типа, по мере прохождения в белой пульпе отдает коллатерали в виде капилляров, снабжающих лимфоидную ткань и заканчивающихся в маргинальной зоне. Дистально центральная артерия утрачивает лимфоидную оболочку и, проникая

вкрасную пульпу, разветвляется на 2-6 кисточковых артериолы, переходящие

вэллипсоидные (гильзовые) капилляры (окружены эллисоидом или гильзой из ретикулярной ткани, лимфоцитов и макрофагов). Они изливают кровь непосредственно в венозные синусы (закрытое кровообращение) или между ними - в тяжи красной пульпы (открытое кровообращение), откуда она попадает в венозные синусы и далее в пульпарные н трабекулярные вены,

собирающиеся в селезеночную вену.

Соотношение объема крови, направляющейся в открытую и закрытую системы, зависит от видовой принадлежности и функционального состояния. Закрытое (быстрое) кровообращение обеспечивает транспорт крови и насыщение тканей кислородом, открытое (медленное) - депонирование форменных элементов крови, возможность их сортировки и отбора полноценных жизнеспособных форм, контакт макрофагов с форменными элементами и антигенами, внесосудистое дозревание лимфоидных клеток макрофагов.

Глава 3 ЭНДОКРИННАЯ СИСТЕМА

ОБЩИЕ ПОНЯТИЯ

Эндокринными называют железы, продукты которых (гормоны) выделяются непосредственно в кровь.

Гормоны - вещества с высокой биологической активностью - регулируют рост и деятельность клеток различных тканей (клеток-мишеней) благодаря наличию на последних специфических рецепторов гормонов.

Эндокринная регуляция является одним из нескольких известных видов регуляторных воздействий (рис. 3-1), среди которых выделяют:

(1)аутокринное (в пределах клеток одного типа);

(2)паракринное (воздействие продуктов клеток одного типа на клетки другого типа);

(3)эндокринное (опосредованное гормонами, циркулирующими в крови);

(4)нервное (воздействие нейрона на орган-мишень через отросток, опосредованное ножным скончанием);

(5)нейроэндокринное (сочетает признаки эндокринного и нервного).

Воздействия (1) и (2) являются локальными, (3), (4) и (5) - дистантными.

Строение эндокринных желез достаточно разнообразно. Они могут быть одноклеточными (элементы ДЭС - диффузной эндокринной системы), иметь вид мелких компактных клеточных скоплений (панкреатические островки) или являться сравнительно крупными органными структурами (щитовидная и околощитовидная железы, эпифиз, гипофиз, надпочечник). Некоторые эндокринные железы (гипофиз, надпочечник) образованы тканями, имеющими

различное эмбриональное происхождение и у низших позвоночных расположенными раздельно. Другие (островки Лангерганса, эндокринные элементы кишечной трубки, половых желез) - лежат внутри неэндокринных. Более тело, есть эндокринные органы, периодически появляющиеся и исчезающие (желтое тело и фолликул яичника).

Рис. 3-1. Важнейшие виды регуляторных воздействий в организме. 1 - аутокринное, 2 - паракрииное, 3 – эндокринное, 4 - нервное, 5 - нейроэндокринное.

Эндокринные железы, имеющие органное строение, обычно покрыты

капсулой из плотной соединительной ткани, от которой вглубь отходят истончающиеся трабекулы, состоящие из рыхлой соединительной ткани и несущие сосуды и нервы. В большинстве эндокринных желез клетки образуют тяжи и тесно прилежат к капиллярам, что обеспечивает секрецию гормонов в кровоток. Капилляры формируют очень густые сети и благодаря своему строению обладают повышенной проницаемостью - они являются фенестрированными или синусоидными. Так как гормоны выделяются в кровь,

выводные протоки у желез отсутствуют.

Клетки эндокринных желез характеризуются высокой секреторной активностью и значительным развитием синтетического аппарата; их строение зависит, в первую очередь, от химической природы вырабатываемых гормонов. В клетках, образующих пептидные гормоны, сильно развиты грЭПС, комплекс Гольджи; в синтезирующих стероидные гормоны, - аЭПС, митохондрии с тубулярно-везикулярными кристами.

Доказана способность многих клеток одновременно вырабатывать несколько гормонов; это позволило отвергнуть ранее сформулированный принцип "одна клетка - один гормон". Полиептидные гормоны нередко синтезируются в виде крупных молекул-предшественников, которые

в дальнейшем подвергаются внутриклеточной ферментной обработке (процессингу) с отщеплением активных гормонов. Различные типы клеток (например, в гипофизе) могут исходно синтезировать один вид молекулыпредшественника, однако вследствие специфического процессинга из нее образуются разные гормоны.

Накопление гормонов обычно происходит внутриклеточно в виде секреторных гранул; нейрогормоны могут аккумулироваться в больших количествах внутри аксонов, резко растягивая их в отдельных участках

(накопительные нейросекреторные тельца). Единственный пример внеклеточного накопления гормонов - в фолликулах щитовидной железы.

Функционально ведущая ткань эндокринной железы - клетки, которые продуцируют гормоны. Способностью к эндокринной секреции обладают все труппы тканей, имеющиеся в организме.

Эпителий - функционально ведущая ткань большинства эндокринных желез (щитовидная и околощитовидные железы, передняя и промежуточная доли гипофиза, корковое вещество надпочечника, некоторые эндокринные элементы гонад - фолликулярные клетки яичника, сустентоциты яичка и др.). Он может относиться к различным гистогенетическим типам.

Соединительнотканное происхождение имеет часть эндокринных элементов гонад (интерстициальные эцдокриноциты - клетки Лейдига, клетки внутреннего слоя теки фолликулов яичника и др.).

Нейральное происхождение имеют эндокринные клетки гипоталамуса, эпифиза, нейрогипофиза, мозгового вещества надпочечнику, элементы дэс.

К мышечным тканям относятся юкстагломерулярные клетки в средней оболочке артериол почечного клубочка, а также секреторные кардиомиоциты.

Общие закономерности организации эндокринной системы включают: (1)

иерархический принцип и (2) наличие системы обратных связей.

1. Иерархический принцип демонстрируется наличием в эндокринной системе нескольких уровней организации. Нижний из них занимают железы, вырабатывающие гормоны, которые влияют на различные ткани организма

(эффекторные или периферические). Деятельность

большинства этих желез регулируется особыми тропными гормонами передней доли гипофиза (второй, более высокий уровень). В сдою очередь, выделение тронных гормонов контролируется специальными нейрогормонами гипоталамуса, который и занимает наиболее высокое положение в иерархической организации системы.

В соответствии с иерархическим принципом, нарушение деятельности периферической железы может обусловливаться изменениями как в самой железе, так и в выделении соответствующих гипофизарных или гипоталамических факторов. Выявление уровня повреждения имеет существенное клиническое значение. В более редких случаях отсутствие эффекта гормонов связано с дефектом соответствующих рецепторов на тканяхмишенях (как правило, генетически обусловленным).

2. Система обратных связей (обычно отрицательных) обеспечивает поддержание необходимого уровня активности эндокринных желез вследствие того, что усиление выработки гормонов периферическими железами угнетает, а ослабление - стимулирует секрецию соответствующих тропных гормонов гипофиза и факторов гипоталамуса.

Эндокринная система взаимодействует с другими регуляторными системами, в частности, иммунной и нервной. Благодаря иннервации эндокринные железы контролируются нервной системой, на деятельность которой, в свою очередь, оказывают влияние гормоны. Особенно ярко взаимосвязь нервной и эндокринной систем проявляется в том, что центральный орган эндокринной системы, интегрирующий ее функцию с деятельностью других систем организма - гипоталамус - сам является частью ЦНС.

ГИПОТАЛАМУС

Гипоталамус - участок промежуточного мозга, содержащий особые нейросекреторные ядра, клетки которых вырабатывают в секретируют в кровь нейрогормоны. Эти клетки получают афферентные импульсы из других частей нервной системы, а их аксоны оканчиваются на кровеносных сосудах (аксо-

вазальные синапсы).

Нейросекреторные клетки - отростчатой формы, с крупным везикулярным ядром, хорошо заметным ядрышком и базофильной цитоплазмой, содержащей развитую грЭПС и крупный комплекс Гольджи, от которого отделяются нейросекреторные гранулы (рис. 3-2). Гранулы транспортируются со скоростью около 1-4 мм/ч по аксону вдоль центрального

пучка микротрубочек и микрофиламентов, а местами накапливаются в больших количествах, растягивая аксон. Самые крупные из таких участков хорошо видны под световым микроскопом и называются накопительными нейросекреторными тельцами (Херринга): в них сосредоточено до 60% всего нейросекрета, лишь около 30% находится в области терминалей. Терминали (аксо-вазальные синапсы) характеризуются присутствием, помимо гранул, многочисленных светлых пузырьков (осуществляют возврат мембраны после экзоцитоза).

Рис. 3.2. Ультраструктурная организация нейросекреторных клеток. А - аксон, АВС - аксо-вазальный синапс, КАП - капилляр, ННСТ - накопительное нейросекреторное тельце, НСГ - нейросекреторные гранулы.

Нейросекреторные ядра гипоталамуса в зависимости от размеров клеток и их функциональных особенностей разделяют на крупно- и мелкоклеточные.

1. Крупноклеточные ядра образованы клеточными телами, которые в 2-3 раза крупнее, чем в других отделах гипоталамуса: к ним относятся

супраоптическое (СОЯ) и паравентрикулярное (ПВЯ) ядра. СОЯ в 3-4 раза объемнее ПВЯ: ПВЯ лишь в центральных участках построено по типу крупноклеточного, а в периферических отделах образовано мелкими нейросекреторными клетками. Аксоны клеток СОЯ и ПВЯ покидают гипоталамус и, в составе гипоталамо-гипофизарного тракта пересекая

гемато-энцефалический барьер, проникают в заднюю долю гипофиза, где образуют терминали на капиллярах (рис. 3-3).

Крупноклеточные ядра секретируют антндиуретическнй гормон (АДГ) или вазопрессин (ВП), и окситоцин. Эти гормоны вырабатываются