Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Химия зачет шпоры

.docx
Скачиваний:
91
Добавлен:
18.06.2017
Размер:
135.6 Кб
Скачать

13. Основные положения протолитической теории кислот и оснований Бренстеда-Лоури. Теория Льюиса.

Теория Бренстеда Лоури: кислотой называют всякое вещество, молекулярные частицы которого(в том числе и ионы) способны отдавать протон, т.е. быть донором протонов; основанием называют всякое вещество, молекулярные частицы которого(в том числе и ионы) способны присоединить протоны, т.е. быть акцептором протонов. Например: HNO3 + H2O= H3O+ + NO3-

Молекула и ион, отличающиеся по составу на один протон, называются сопряженной кислотно-основной парой. Частицы, способные к взаимодействию как с кислотами, так и с основаниями, называются амфолитами.

Теория Льюиса:

кислотой называют вещество, принимающие электронные пары, - акцептор электронов; основанием называют вещество, поставляющее электроны для образования химической связи, - донор электронов. Например: NH3 + HCI=NH4CI

14. Автопротолиз –обратимый процесс образования равного числа катионов и анионов из незаряженных молекул жидкого индивидуального вещества за счет передачи протона от одной молекулы к другой. H2O + H2O= H3O+ + OH–. Это равновесие называется равновесием автопротолиза воды. Константа автопротолиза для воды обычно называется ионным произведением воды и обозначается как Kw. Ионное произведение численно равно произведению равновесных концентраций ионов гидроксония и гидроксид-анионов. Обычно используется упрощенная запись:

При стандартных условиях ионное произведение воды равно 10-14. Оно является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. Автопротолиз воды объясняет, почему чистая вода, хоть и плохо, но всё же проводит электрический ток. pH — это водородный показатель— мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм концентрации водородных ионов, выраженной в молях на литр: pH = -log[H+]. Т.е. рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. (Моль — единица измерения количества вещества.) Если в воде пониженное содержание свободных ионов водорода [H+] (рН > 7) по сравнению с ионами гидроксида [ОН-], то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН < 7) - кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга и в нейтральной воде рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению значения рН. Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию.

15. Типы протолитических реакций. К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим. протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием - вещество, способное присоединять протон, например:

CH3COOH + H2O = CH3COO- + H3O+

кислотаI основаниеI основаниеI кислотаII

NH3 + H2O = NH4+ + OH-

основаниеIкислотаII кислотаII основаниеI К протолитическим реакциям относят реакции нейтрализации и гидролиза.

Реакция 1 типа уксусная кислота с водой: протекающая в прямом направлении,представляет ионизацию уксксной кислот,в обратном направлении-нейтрализацию какого –либо ацетета. Реакция 2 типа NH4 +H2O=NH3+H3O протекает в прямом направлении показывает гидролиз какой-либо соли аммония ,а в обратном направлении-нейтрализацию аммиака РеакциИ 3типа имеют место не только в воде но ив других растворителях например в жидком аммиаке.

Гидро́лиз— один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия. гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ выделяется энергия, обеспечивающая нужды клетки.При гидролизе солей вода является источником протонов и электронов. Алкалиметрия и ацидиметрия — важнейшие титриметрические методы определения кислот или же оснований, основанные на реакции нейтрализации:Н+ + ОН− = Н2ОТитрование раствором щелочи называется алкалиметрией, а титрование раствором кислоты — ацидиметрией

16.Буферные системы - это растворы, обладающие способностью сохранять постоянство рН среды при разбавлении, а также при добавлении небольших количеств сильной кислоты или щелочи.

Протолитические буферные системы делят на несколько типов:

1.Кислотного тип

НА=Н+А Ацетатный(сн3соон/сн3со) гидрокарбонатный(н2со3/нсо) фосфатный(н2ро4/нро4)

2.Основного типа аммиачные (NH4OH/NH4CI)

3.Амфолитный тип(белки и аминокислоты)

Механизм действия буферных систем:

1.Разбавление буферных систем-буферные системы сохраняют реакцию среды при разбавлении водой т.к соотношение концентраций остается прежним. Из уравнения Гендерсона-Гассельбаха следует,что при разведении системы водой увеличевается ее объем,количество кислоты и соли остаются прежними

2.Постоянство реакции среды при добавлении кислот и оснований-буф. Системы противостоят изменению рН среды за счет своих кислотных или основных резервов. Протоны добавленной кислоты будут связываться с основаниями ,а гидроксид-анионы добавленного основания с кислотой буферной системы

 рН крови –7,40 . Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотно-основное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемогло-биновая.

1.Бикарбонатная буферная система –представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3, выполняющего роль акцептора протона:

Для данной буферной системы величину рН в растворе можно выразить

2.Фосфатная буферная система представляет собой сопряженную кислотно-основную пару, состоящую из иона Н2РО4 (донор протонов) и ионаНРО42– (акцептор протонов):

. Для фосфатной буферной системы справедливо следующее уравнение:

3.Белковая буферная система имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы.

Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок–Н+ (кислота, донор протонов) и белок(сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2–7,4.

4.Гемоглобиновая буферная система – самая мощная буферная система крови. , гемоглобиновая буферная система состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донор протонов) и калиевойсоли гемоглобина КНb (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются вза-имопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина прежде всего обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

КНb + Н2СO3—> КНСO3 + ННb.

Буферная емкость-мера буферного действия, количественно характеризующая способность буферных систем противодействовать смещению активной реакции среды. Буферная емкость равна числу молей эквивалента сильной кислоты или сильного основания, которое нужнодобавить к 1л раствора, чтобы рН изменился на еденицу

Аналогичная формула для оснований

Существует несколько способов определения буферной системы: титриметрический и потенциометрический. Буферная система максимальна, если отношение компонентов равна единице. При разбавлении буферного раствора водой рН неизменяеться, а емкость буферной системы будет уменьшаться пропорционально разбавлению

Смещение значения рН крови в менее щелочную область значения называеться ацидоз,а в более щелочную алкалоз.При снижении рН от 7,2 или повышении рН до 7,8 организм гибнет,не справляясь с регуляцией процессов жизнидеятельности. В соответствии может возникать раличного рода заболевания

Респираторный ацидоз возникает при замедленном выделении углекислого газав связи с альвиолярной гиповентиляцией.

Метаболический ацидоз связан с избыточным образованием и поступлением или нарушением выделения ионов,а так же с потерей оснований

Респераторный алкалоз- повышенное выделение углекислого газа

Метаболический алкалоз-черезмерные потери желудочного сока, частая рвота,при повышении выделения ионов

18. Пространственное строение комплексных соединений. Классы комплексных соединений. Пространственное строение комплекса определяется типом гибридизации атомных орбиталей центрального атома. Комплексные соединения с координационным числом 2 встречаются редко(sp-гибридизация).пример:[Ag(NH3)2]+. Наиболее распространены комплексы с координационными числами 4 и 6. Для описания геометрии комплексных соединений пользуются понятием координационных полиэдров(многогранник.вершинами которого служат лиганды, связанные с центральным атомом-комплексообразователем. Комплексы с координационным числом 4 могут быть как тетраэдрическими(sp3-гибридизация)пример:[Zn(NH3)4]2+ , так и плоскоквадратными(dsp2-гибридизация)пример:[Pt(NH3)4]2+. Комплексы с координационным числом 6 имеют октаэдрическую конфигурацию(d2sp3-гибридизация).Пример:[Ni(NH3)6]3+. Реже встречаются комплексы с координационным числом 5(dsp3-гибридизация). Они образуют тригональную бипирамиду(пример:[CdCI5]3-) или квадратную пирамиду.( пример:[Ni(CN)5]3-). Координационному числу 12(очень редко) соответствует икосаэдр.

Классы комплексных соединений: 1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.). [(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II) [Co(NH3)6]Cl3 — хлорид гексоамминкобальта(II) 2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы. K2[BeF4] — тетрафторобериллат(II) калия Li[AlH4] — тетрагидридоалюминат(III) лития K3[Fe(CN)6] — гексацианоферрат(III) калия 3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а так же при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул. [Ni(CO)4] — тетракарбонилникель [Pt(NH3)2Cl2] — дихлородиамминплатина(II) 4)Внутрикомплексные клешневидные соединения, хелатные соединения. Классический пример— гликоколят меди

19.Комплексоны, их применение в медицине. Ионные равновесия в растворах комплексных соединений. Константа нестойкости комплексного иона. Сложные органические лиганды. Представление о строении металлоферментов. Механизм токсического действия тяжёлых металлов на основе ЖМКО.

Комплексоны - аминополикарбоновые кислоты и их производные, применяемые в методе комплексонометрии, а также для умягчения воды и др. технических целей. В аналитической практике используют нитрилотриуксусную кислоту N (CH2COOH)3 — комплексон I и двунатриевую соль этой кислоты — комплексон III, или трилон Б.

Вещества, устраняющие последствия воздействия ядов на биологические структуры и инактивирующие яды, посредством химических реакций, называют антидотами.

(Na3 СаДТПА) – пентацин и (NaCa2 ДТПФ) – тримефацин. Их применяют при острых и хронических отравлениях свинцом, радионуклидами, алюминием, цинком, церием и др, (Na2СаЭДТФ) фосфицин успешно используется для выведения из организма ртути, свинца, берилия, марганца, актиноидов и других металлов.

В водных растворах комплексных соединений устанавливается равновесие, которое характеризуется константой устойчивости (Куст.) или величиной, обратной ей, константой нестойкости (Кн). Пользуясь величиной соответствующей константы, необходимо уметь рассчитывать равновесные концентрации ионов в растворе комплексных соединений в присутствии избытка лиганда и без избытка лиганда.

константа равновесия - константа нестойкости комплексного иона [Ag(NH3)2]+ :

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости.

У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа. Она называется лиганд, то есть молекула, связанная с белком.

В роли лиганда могут выступать любые молекулы:

молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине,

переносимые белками молекулы: железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине,

субстраты для ферментов – любые молекулы и даже другие белки.

Металлоферменты — ферментоы, для функционирования которых необходимо присутствие катионов тех или иных металлов. В подобном ферменте могут присутствовать несколько различных ионов металла. Катион металла при этом обеспечивает правильную пространственную конфигурацию активного центра металлофермента.

Примерами металлоферментов являются карбоксипептидаза, карбоангидраза, или селен-зависимая монодейодиназа, конвертирующая тироксин в трийодтиронин

ЖМКО

Мягкие кислоты предпочтительней координируют мягкие основания, а жёсткие – жёсткие. Таким образом, ионы ртути, свинца, таллия (мягкие кислоты) имеют большее сродство к серосодержащим лигандам, а ионы магния, кальция (жёсткие) – к кислород- и азотсодержащим лигандам.

20.Понятие биогенности химических элементов. Биосфера, круговорот биогенных элементов. Классификация биогенных элементов по их функциональной роли: органогены, элементы электролитного фона, микроэлементы, ксенобиотики. Окружающая среда: химические аспекты экологии.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами.

Часть земной оболочки, занятой растительными и животными организмами и переработанная ими и космическими излучениями и приспособленная к жизни, называют биосферой

Концентрация элементов в живом веществе прямо пропорциональна его содержанию в среде обитания с учетом растворимости их соединений. Химический состав организма определяется составом окружающей среды. Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Пути поступления элементов в организм разнообразны. Согласно биогеохимической теории Вернадского существует «биогенная миграция атомов» по цепочке воздух> почва®вода®пища®человек, в результате которой практически все элементы, окружающие человека во внешней среде, в большей или меньшей степени проникают внутрь организма.

Для 30 элементов биогенность установлена.

Классификация биогенных элементов по их функциональной роли:

1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов (переходные металлы).

Ксенобиотики - чужеродные для организмов химические вещества, естественно не входящие в биотический круговорот и прямо или косвенно порожденные хозяйственной деятельностью человека.

23. Химия элементов s блока. К s-элементам относятся две группы Периодической системы: IА и IIА. В группу IА входят 8 элементов: литий, калий, натрий, рубидий, цезий, франций, водород, гелий. В группу IIА входят 6 элементов: бериллий, магний, кальций, стронций, барий, радий Общая характеристика элементов IА и IIА. Элементные вещества - типичные металлы, обладающие блеском, высокой электрической проводимостью и теплоповодимостью, химически весьма активны.s-элементы IА и IIА имеют относительно большие радиусы атомов и ионов. s-элементы IА и IIА групп легко отдают валентные электроны. Являются сильными восстановителями. С ростом радиуса атома в группах IА и IIА ослабевает связь валентных электронов с ядром, следовательно s-элементы этих групп имеют низкие значения Еи и Еср..сильных восстановителей. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз. Для элементов IIА группы характерна большая, чем для элементов IА группы способность к комплексообразованию. s-элементы IА и IIА образуют соединения с ионным типом связи. Исключение составляет водород, для которого в соединениях даже с самыми электроотрицательными элементами характерна преимущественно ковалентная связь (например, фтороводород или вода.Сравнение свойств элементов IА и IIА (комплексообразование, образование осадков) на примере Na, K и Mg, Ca Атомы элементов IА группы имеют по одному валентному электрону на s подуровне внешнего энергетического уровня. Это обуславливает проявление степени окисления +1 Химическая активность металлов IА группы возрастает закономерно с увеличением радиуса атома и уменьшением их способности к гидратированию (чем меньше способность к гидратированию, тем активнее металл). Так как радиус атома калия больше, чем радиус атома натрия, то способность к гидратации для катиона калия будет ниже, чем для катиона натрия, а, следовательно, химическая активность катиона калия выше, чем у катиона натрия. Вследствие незначительного поляризующего действия (устойчивая электронная структура, большие размеры, малый заряд ядра) комплексообразование для ионов щелочных металлов малохарактерно. Вместе с тем, они способны образовывать комплексные соединения с некоторыми биолигандами (КЧ для натрия и калия может принимать значения 4 и 6). Способность образовывать донорно-акцепторные связи с соответствующими лигандами едва намечается у натрия. У калия имеется значительная тенденция к использованию имеющихся в атоме вакантных d-орбиталей. Большинство солей щелочных металлов хорошо растворимы в воде (исключение составляют некоторые соли лития). Степени окисления больше +2 элементы IIА группы не проявляют. Несмотря на то, что число валентных s электронов у атомов IIА группы одинаково, свойства магния и кальция отличаются друг от друга. Это связанно с тем, что в атоме кальция, в отличие от атома магния, имеются свободные d-орбитали, близкие по энергии к ns орбиталям. Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвуют в поддержании постоянного осмотического давления биожидкости (осмотического гомеостаза) Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов.. Ионы калия играют важную роль в физиологических процессах - сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях. Являются важными активаторами внутриклеточных ферментов. Формально магний относится к макроэлементам. В наибольшей степени магний концентрируется в дентине и эмали зубов, костной ткани. Накапливается в поджелудочной железе,скелетных мышцах. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови. Химическое сходство и биологический антагонизм натрия, калия, кальция и магния.Сходство электронного строения ионов щелочных (натрий и калий) и щелочноземельных (магний и кальций) металлов и различия физико-химических характеристик определяет их действия на биологические процессы.Натрий и калий являются антагонистами. В ряде случаев близость многих физико-химических свойств обусловливает их взаимозамещение в живых организмах. Например, при увеличении количества натрия в организме усиливается выведение калия почками, наступает гипокалиемия.Магний и кальций являются антагонистами. Ионы кальция подавляют активность многих ферментов, активизируемых ионами магния. Антагонизм ионов кальция и магния проявляется еще и в том, что ион кальция является внеклеточным ионом. При длительном поступлении в организм избыточных количеств солей магния наблюдается усиленное выделение кальция из костной ткани.

24. К d-блоку относятся 32 элемента периодической системы. Они расположены в побочных подгруппах периодической системы в 4-7 больших периодах между s- и p-элементами. (Sc Ti V Cr Mn Fe Co Cu Zn)

Характерной особенностью элементов d-блока является то, что в их атомах последними заполняются орбитали не внешнего слоя (как у s- и p-элементов), а предвнешнего [(n - 1)d] слоя. В связи с этим, у d-элементов валентными являются энергетически близкие девять орбиталей – одна ns-орбиталь, три nр-орбитали внешнего и пять (n - 1)d-орбиталей предвнешнего энергетического уровней

Элементы d-блока находящиеся в III, IV, V, VI, VII B группах имеют незавершенный d-электронный слой (предвнешний эн. уровень). Такие электронные оболочки неустойчивы. Этим объясняется переменная валентность и возможность проявлять различные степени окисления d-элементов. Степени окисления элементов d-блока в соединениях всегда только положительные.

Соединения с высшей степенью окисления проявляют кислотные и окислительные свойства (в растворах представлены кислородсодержащими анионами). Соединения с низшей степенью окисления – основные и восстановительные свойства (в растворах представлены катионами). Соединения с промежуточной степенью окисления – проявляют амфотерные свойства.

Например: CrO основной оксид, Cr2O3 – амфотерный оксид, CrO3 – кислотный оксид.

Комплексообразующая способность d-элементов

Возможность создания химических связей с участием d-электронов и свободных d-орбиталей обуславливает ярко выраженную способность d-элементов к образованию устойчивых комплексных соединений.

При низких степенях окисления для d-элементов более характерны катионные, а при высоких – анионные октаэдрические комплексы ([ScF6]3–, [TiF6]2–, [VF6]–)

КЧ d-элементов непостоянны, это четные числа от 4 до 8, реже 10,12.

Используя незаполненные d-орбитали и неподеленные пары d-электронов на предвнешнем электронном слое, d-элементы способны выступать как донорами электронов – дативная связь, так и акцепторами электронов. Пример соединений с дативной связью: [HgI]Ї, [CdCl4]Ї.

Гидроксокомплексы – комплексные соединения, содержащие в качестве лигандов гидроксид-ионы OH-. Гидроксокомплексы образуются в реакциях протолиза из аквакомплексов:

[Al(H2O)6]3+ + H2O [Al(H2O)5(OH)]2+ + H3O+

либо при растворении амфотерных гидроксидов в водных растворах гидроксидов щелочных металлов:

Zn(OH)2 + 2 OH- = [Zn(OH)4]2-

Fe - ходит в состав гемоглобина, ферментов цитохромов, каталазы, пероксидазы

Co - входит в состав витамина В12

Cr - Биогенный элемент.

Mn - Входит в состав ферментов

Cu - Входит в состав ферментов окигеназ и гидролаз. Участвует в кроветворении.

Zn - Входит в состав ферментов катализирующих гидролиз пептидов, белков, некоторых эфиров и альдегидов.

25. К р – блоку относятся 30 элементов IIIA-VIIIA групп периодической системы и входят во второй и третий малые периоды, а также в четвертый – шестой большие периоды. У элементов IIIA группы появляется первый электрон на р – орбитали. В других группах IVA-VIIIA происходит последовательное заполнение р – подуровня до 6 электронов. Строение внешних электронных оболочек атомов элементов р – блока ns2npa , где а = 1÷6.

На свойства р–элементов и их соединений оказывает влияние как появление новых подуровней на внешней электронной оболочке, так и заполнение внутренних электронных оболочек. р – Элементы второго периода (В, С, N, O, F) резко отличаются от элементов нижеследующих периодов, так как, начиная с р–элементов третьего периода, появляется низколежащий свободный d-подуровень, на который могут переходить электроны с р – подуровня при возбуждении атома. Полностью заполненный 3 d-подуровень у р–элементов четвертого периода (Ga, Ge, As, Se, Br) обуславливает отличие их свойств от элементов третьего периода. Максимальное заполнение 4f-подуровня в шестом периоде сказывается на различии свойств р–элементов шестого и пятого периодов.

Вдоль периода у р–элементов падает способность к образованию положительно заряженных ионов с зарядом, отвечающим номеру группы, и наоборот, способность к образованию отрицательных ионов с зарядом, равным (8 – № группы) возрастает.

р – элементы образуют двухатомные молекулы Э2, различающиеся по устойчивости. Наиболее устойчивы молекулы элементов второго периода (N2, O2, F2). При переходе от IIIA к IVA и VA группам устойчивость двухатомных молекул возрастает, а затем при переходе к VIIIА группе понижается. В группах сверху вниз прочность связи Э–Э уменьшается.

Постоянные пломбировочные (реставрационные) материалы предназначены для восстановления анатомической формы, функции и внешнего вида зуба, а также предотвращения развития кариеса. Один из разновидностей таких материалов цементы:

– цинк-фосфатные цементы;

– силикатные цементы;

– силикофосфатные цементы.

Твердокристаллические материалы

К этой группе слепочных материалов относятся гипс, цинкоксиэвгеноловые и цинкоксигваяколовые пасты. Характерной особенностью этих масс является то, что в отвердевшем состоянии они имеют четкое кристаллическое строение, лишены пластичности и упругих свойств.

26. Адсорбция- изменение концентрации вещества на границе раздел фаз. Происходит на любых межфазовых поверхностях и адсорбироваться могут любые вещества. Адсорбционное равновесие, т.е. равновесие распределения вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливаются. Адсорбция уменьшается с увеличением температуры и покидает поверхность. Поверхностное Натяжение есть величина, численно равная энергии Гиббса, приходящейся на единицу площади поверхностного слоя и численно равная работе, еоторую необходимо совершить для образования единицы поверхности раздела фаз при постоянной температуре. ПН зависит от природы жидкости и температуры(уменьшается с ростом t). Вода имеет самое высокое значение ПН. ПН сыворотки крови составляет 45,4*10-3Н/м.

Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз.

Если сигма вещества больше сигма растворителя, то это ПНВ. Такое вещество равномерно распределяется и мало влияет на поверхностное натяжение. ПНВ: соли, кислоты, углеводы. Для ПНВ g=0 Г=0

Если добавить вещество, у которого сигма < сигма растворителя, то поверхностное натяжение раствора резко уменьшится. Это ПАВ – дифильная молекула(одна часть любить воду, а другая нет) ПАВ: жиры. Для ПАВ g>0 Г >0

Биомембраны: структура и функции

А. Структура плазматической мембраны

Все биомембраны построены одинаково; они состоят из двух слоев липидных молекул толщиной около 6 нм, в которые встроены белки. Некоторые мембраны содержат, кроме того, углеводы, связанные с липидами и белками. Соотношение липиды : белки : углеводы является характерным для клетки или мембраны и существенно варьирует в зависимости от типа клеток или мембран (см. с. 218).

Компоненты мембран удерживаются нековалентными связями (см. с. 12), вследствие чего они обладают лишь относительной подвижностью, т. е. могут диффундировать в пределах липидного бислоя. Текучесть мембран зависит от липидного состава и температуры окружающей среды. С увеличением содержания ненасыщенных жирных кислот текучесть возрастает, так как наличие двойных связей способствует нарушению полукристаллической мембранной структуры. Подвижными являются и мембранные белки. Если белки не закреплены в мембране, они «плавают» в липидном бислое как в жидкости. Поэтому говорят, что биомембраны имеют жидкостно-мозаичную структуру.

В то время как «дрейф» в плоскости мембраны происходит достаточно легко, переход белков с внешней стороны мембраны на внутреннюю («флип-флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов необходимы специальные белки транслокаторы. Исключение составляет холестерин, который может легко переходить с одной стороны мембраны на другую.

Б. Мембранные липиды

На рисунке схематически изображена биомембрана. В мембранах содержатся липиды трех классов: фосфолипиды, холестерин и гликолипиды. Наиболее важная группа, фосфолипиды, включает фосфатидилхолин (лецитин), фосфатидилэтаноламин, фосфатидилсерин, фосфатидилинозит и сфингомиелин (см. с. 56). Холестерин присутствует во внутриклеточных мембранах животных клеток (за исключением внутренней мембраны митохондрий). Гликолипиды входят в состав многих мембран (например, во внешний слой плазматических мембран). В состав гликолипидов входят углеводные функциональные группы (см. с. 92), которые ориентируются в водную фазу.

Липиды мембран представляют собой амфифильные молекулы с полярной гидрофильной головкой (голубого цвета) и неполярным липофильным хвостом (желтого цвета). В водной среде они агрегируют за счет гидрофобных взаимодействий и вандерваальсовых сил (см. сс. 12, 34).

В. Мембранные белки

Протеины могут связываться с мембраной различным путем.

Интегральные мембранные белки имеют трансмембранные спирализованные участки (домены), которые однократно или многократно пересекают липидный бислой. Такие белки прочно связаны с липидным окружением.

Периферические мембранные белки удерживаются на мембране с помощью липидного «якоря» (см. с. 230) и связаны с другими компонентами мембраны; например, они часто бывают ассоциированы с интегральными мембранными белками.

У интегральных мембранных белков фрагмент пептидной цепи, пересекающий липидный бислой, обычно состоит из 21-25 преимущественно гидрофобных аминокислот, которые образуют правую α-спираль с 6 или 7 витками (трансмембранная спираль).

27. Дисперсные системы - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или несколько дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. По степени раздробленности (дисперсности) системы делятся на следующие классы: 1)грубодисперсные, размер частиц в которых более 10-5 м; 2)тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; 3)коллоидно-дисперсные (ультрамикро-гетерогенные)с частицами размером от 10-7до 10-9м.

Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.

По агрегатным состояниям фаз- два класса: свободнодисперсные системы и сплошные (или связнодисперсные) системы .В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивление деформации сдвига.

Классификация дисперсных систем по силе межмолекулярного взаимодействия: 1)лиофобные- слабое взаимодействие между дисперсной фазой и дисперсной средой 2)лиофильные- сильное взаимодействие

Коллоидными системами называют двух или многофазные системы, в которых одна фаза находится в виде отдельных мелких частиц, распределенных в другой фазе. Такие ультрамикрогетерогенные системы с определенной (коллоидной) дисперсностью проявляют способность к интенсивному броуновскому движению и обладают высокой кинетической устойчивостью. Имея высокоразвитую поверхность раздела фаз и, следовательно, громадный избыток свободной поверхностной энергии, эти системы являются принципиально термодинамически неустойчивыми, что выражается в агрегации частиц, т.е. в отсутствии агрегативной устойчивости. Это системы с очень малой межфазовой энергией, они термодинамически устойчивы и образуются самопроизвольно.

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией.

29. Оптические свойства: рассеивание света. Электрокинетические свойства: электроосмос и электрофорез. Строение двойного электрического слоя.

Для истинных растворов характерно пропускание, они являются оптически прозрачными. Грубодисперсные – оптически мутные (размеры больше длины волны). Для золей характерно рассеивание света в результате огибания частиц световой волной. Луч света в таких растворах становится видимым ( явление конуса Тиндаля). Закон светорассеивания(закон Рэлея):

I=I0k * (Cчаст V2 / λ 4),

Где I – интенсивность рассеянного

I0 – интенсивность падающего света

K – константа Рэлея, зависящая от соотношения показателей преломления среду и фазы

Cчаст – частичная концентрация

V – объем частицы дисперсной фазы

Λ – длина волны падающего света

Выводы Рэлея:

1) интенсивность рассеянного света прямо пропорциональна концентрации частиц.

2) интенсивность рассеянного света прямо пропорциональна квадрату объема частицы.

3) в большей степени при прохождении через золи рассеивается коротковолновое излучение.

Электрофорез – движение частиц в электрическом поле, т.е. перемещение частиц дисперсной фазы относительно неподвижной дисперсионной среды под действие внешнего электрического поля.

Электроосмос – движение растворителя в электрическом поле, т.е. перемещение дисперсионной среды относительно неподвижной дисперсной фазы в электрическом поле.

Электроосмос и электрофорез обусловлены наличием двойного электрического поля на поверхности частицы золя.

Электрофорез применяется для разделения аминокислот и белков, нуклеиновых кислот, антибиотиков, ферментов, антител, форменных элементов крови и т.д. В клинических исследованиях электрофорез используют для диагностики заболеваний, сопровождающихся изменением состава белков.

Двойной электрический слой состоит возникает на границе раздела фаз: твердое вещество – раствор электролита. Он состоит из достаточно прочно связанных с поверхностью дисперсной фазы потенциалопределяющих ионов и противоионов, находящихся в дисперсной среде. Потенциалобразующие ионы вместе со связанными противоионами образуют адсорбционный слой. Возникает разность потенциалов.

30. Электрокинетический потенциал и его зависимость от различных факторов. Устойчивость дисперсных систем. Устойчивость коллоидных систем. Коагуляция. Порог коагуляции и его определение. Коллоидная защита и пептизация. Коагуляция в биологических системах.

Скачок потенциалов на поверхности скольжения называется дзета-потенциалом, или электрокинетическим потенциалом. Его значение определяется толщиной диффузного слоя и числом противоионов в диффузном слое(чем меньше толщина слоя, тем меньше потенциал).

Его рассчитывают по уравнению:

ξ = ƞ*h*L/ Ɛ*Ɛ0*U*Ʈ

где ƞ – вязкость дисперсионной среды

h – смещение границ, м

L – расстояния между концами агаровых сифонов, м

Ɛ – диэлектрическая проницаемость воды (80)

Ɛ0 – электрическая постоянная, равная 8,85*10-12 Ф/м

U – разность потенциалов на электродах, В

Ʈ – время, с.

Устойчивость любой дисперсной системы определяется способностью дисперсной фазы сохранять исходную степень диссоциации и равномерное распределение в дисперсионной среде.

Различают кинетическую и агрегативную устойчивость.

Кинетическая устойчивость обусловлена диффузией и броуновским движением коллоидных частиц, которые препятствуют оседанию частиц под действием силы тяжести.

Агрегативная устойчивость – способность системы к сохранению степени дисперсности. Причиной агрегативной устойчивости является наличие у коллоидных частиц электрического заряда, который препятствует слипанию частиц, а также способствует образованию развитых сольватных защитных слоев.

Потеря агрегативной устойчивости происходит путем коагуляции – укрупнения коллоидных частиц. Она может быть вызвана: действием тепла, излучений, электролитов или другого коллоидного раствора с частицами противоположного заряда. Различают скрытую и явную коагуляцию.

При скрытой коагуляции происходит некоторое уменьшение общего числа коллоидных частиц, но осадок не выпадает, видимых изменений нет. В результате скрытой коагуляции происходит изменение вязкости золя, степени дисперсности.

При явной коагуляции каждое соударение частиц приводит к слипанию, образуется осадок. Наименьшая концентрация электролита, которая может вызвать явную коагуляцию золя, называется пороговой и характеризует порог коагуляции (от 10-5 до 0,1 моль в литре золя).

Определение порогов коагуляции визуальным методом:

Берут растворы NaCl, BaCI2. Методом двойных разбавлений готовят по 5 растворов каждого электролита ( в пробирку отбирают 1 мл раствора электролита и 1 мл дистиллированной воды, затем из образующегося раствора отбирают 1 мл и смешивают в другой пробирке с 1 мл дистиллированной воды и т.д.) В пробирку отбирают 1 мл латекса и 1 мл раствора электролита, встряхивают и через 5-10 мин отмечают эффект коагуляции. Сравнив найденные значения порогов коагуляции электролитов, определяют знак иона-коагулятора и, соответственно, знак заряда коллоидных частиц исследуемого золя. Более точно определение порогов коагуляции можно осуществить с помощью фотоэлектроколориметра. В этом случае изменение дисперсности в результате коагуляции обнаруживают по изменению оптических свойств системы, в частности по изменению интенсивности светорассеивания.

Основные причины коагуляции под действием электролитов вызваны уменьшение дзета-потенциала вследствие:

1) сжатия диффузного слоя 2) адсорбции на коллоидной частице ионов добавленного электролита, имеющих заряд, противоположный заряду гранул.

Пептизацией называют процесс перехода свежеполученного при коагуляции осадка в золь под действием пептизаторов. Пептизация – процесс, обратный коагуляции. Пептизаторами могут быть электролиты и неэлектролиты. Различают адсорбционную и химическую пептизацию.

Примером адсорбционной пептизации может служить переход в золь свежеполученного и промытого водой осадка гидроксида железа(3) при добавлении к нему небольших количеств раствора хлорида железа(3).

Пример химической пептизации: пептизация осадка гидроксида железа (3) соляной кислотой. Происходит химическая реакция соляной кислоты с частью осадка, ионы пептизаторы адсорбируются на частицах осадка.

Процессы коагуляции имеют большое значение в жизнедеятельности организма. Для сохранения постоянства физико-химических условий в организме необходимо соблюдать постоянство не только концентрации электролитов, но и их качественного состава. Например, изотонический раствор MgSO4 будет обладать более сильным коагулирующим действием, чем раствор NaCl.

Часто необходимо стабилизировать коллоидный раствор. Такой способностью обладают некоторые ПАВ, например, желатин и другие белки, полисахариды, пектиновые вещества, обладающие так называемым защитным действием. Коллоидная защита играет важную роль в ряде физиологических процессов. Белки крови являются защитой для жира, холестерина. В крове и моче содержатся в коллоидном состоянии труднорастворимые фосфат, карбонат, оксалат кальция, стабилизированные защитными веществами белкового характера. При некоторых заболеваниях содержание защитных веществ уменьшается, что приводит к выпадению указанных солей в осадок (образование камней в почках, печени, отложение солей в суставах и др.)

Измерением защитного числа («золотого числа») спинномозговой жидкости пользуются для диагностики некоторых заболеваний, например, менингита. Лекарственные препараты бактерицидного действия – протаргол и колларгол – являются золями металлического серебра, защищенными белками.

31. Коллоидные ПАВ. Биологически важные коллоидные ПАВ (мыла, детергенты, желчные кислоты). Мицеллообразование в растворах ПАВ. Липосомы.

Пове́рхностно-акти́вные вещества́ (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю.

Как правило, ПАВ — органические соединения, имеющие амфифильное строение, то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент(функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобный компонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот — олеата, стеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спирты, карбоновые кислоты, амины и т. п.

Детергент — вещество или смесь, помогающее отмывать что-либо от грязи, моющее средство.

Наиболее распространен вид смесей-детергентов – мыло

В состав детергентов могут входить:

Поверхностно-активные вещества, то есть вещества, уменьшающие поверхностное натяжение воды и способствующие тем самым проникновению воды в поры и между волокнами.

Же́лчные кисло́ты (синонимы: жёлчные кислоты[1], холевые кислоты, холиевые кислоты, холеновые кислоты) — монокарбоновые гидроксикислоты из класса стероидов.

Желчные кислоты — производные холановой кислоты С23Н39СООН, отличающиеся тем, что к её кольцевой структуре присоединены гидроксильные группы.

В желчи желчного пузыря человека желчные кислоты представлены так называемыми парными кислотами: гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой, таурохолевой

хенодезоксихолевая кислота увеличивает концентрацию гликохолевой кислоты по сравнению с таурохолевой, тем самым уменьшая содержания потенциально токсичных соединений. Кроме того, оба препарата способствуют растворению холестериновых желчных камней, уменьшают количество холестерина, количественно и качественно изменяют состав желчи.

Мицеллы — частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет строение:

{(As2S3)m•nHS−•(n-x)H+}x-•хН+

Средний размер мицелл от 10−5 до 10−7см.

Мицеллообразование - самопроизвольная ассоциация молекул ПАВ в растворе. В результате в системе ПАВ-растворитель возникают мицеллы-ассоциаты характерного строения, состоящие из десятков дифильных молекул, имеющих длинноцепочечные гидрофобные радикалы и полярные гидрофильные группы. В так называемых прямых мицеллах ядро образовано гидрофобными радикалами, а гидрофильные группы ориентированы наружу. Число молекул ПАВ, образующих мицеллу, называют числом агрегации; по аналогии с молярной массой мицеллы характеризуются и так называемой мицеллярной массой. Обычно числа агрегации составляют 50-100. Образующиеся при мицеллообразовании мицеллы полидисперсные и характеризуются распределением по размерам (или числам агрегации).

Липосомы — самопроизвольно образующиеся в смесях фосфолипидов с водой замкнутые пузырьки. Их стенка состоит из одного или нескольких бислоёв фосфолипидов (слоёв толщиной в две молекулы), в которые могут быть встроены другие вещества (например, белки). Внутри липосом содержится вода или раствор. Замедляют процесс старения.

32.Титриметрический анализ. Химический эквивалент вещества. Молярная концентрация эквивалента вещества. Закон эквивалентов. Точка эквивалентности и способы её фиксирования. Ацидиметрия и алкалиметрия: титранты и индикаторы.

Титриметрический анализ (титрование) — методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объема раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Титриметрический — от слова титр.

Титриметрический анализ использует различные типы химических реакций:

нейтрализации (кислотно-основное титрование) — нейтрализация — это реакции с изменением pH растворов.

окисления-восстановления (перманганатометрия, иодометрия, хроматометрия) — реакции, которые происходят с изменением окислительно-восстановительных потенциалов в системе титрования.

осаждения (аргентометрия) — реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе.

комплексообразования (комплексонометрия) — реакции, основанные на образовании прочных комплексных соединений ионов металлов (всех, кроме одновалентных) с комплексоном III (двунатриевой солью этилендиаминтетрауксусной кислоты), при этом изменяются концентрации ионов металлов в титруемом растворе.

Титрование — процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа

Эквивалент – реальная или условная частица вещества Х, которая в данной обменной реакции обменивает 1 однозарядный ион (Н+) или в данной ок-восст. реакции переносит 1 электрон.

Фактор эквивалентности fэкв (Х) – число, обозначающее, какая доля реальной частицы в-ва Х эквивалентна одному иону водорода в данной кислотно-основной реакции или 1 электрону в данной ОВР.

fэкв (Х)=1/Z

Z – основность кислоты или кислотность основания; или число электронов, присоединяемых или теряемых частицей в дано ОВР

Молярная масса эквивалента вещества Х – произведение фактора эквивалентности на молярную массу вещества Х.

М(1/Z Х) = 1/Z . М(Х) (г/моль)

Молярная концентрация с – отношение количества вещества (в молях), содержащегося в растворе, к объему раствора. Единицы измерения - моль/м3, (моль /л). Раствор, имеющий концентрацию 1 моль/л, обозначают 1 М; 0,5 моль/л, обозначают 0,5 М.

Молярная концентрация эквивалентов сэк (нормальная концентрация) – это отношение количества вещества эквивалентов (моль) к объему раствора (л). Единица измерения нормальной концентрации моль/л. Например, сэк(KOH) = 1 моль/л, сэк(1/2H2SO4) = 1 моль/л, сэк(1/3 AlCl3) = 1 моль/л. Раствор в 1 л которого содержится 1 моль вещества эквивалентов, называют нормальным и обозначают 1 н.

Закон эквивалентов:

все вещества реагируют в эквивалентных отношениях.

формула, выражающая Закон эквивалентов: m1Э2=m2Э1

Точка эквивалентности (в титриметрическом анализе) — теоретическая точка, соответствующая 100%-ному оттитровыванию определяемого компонента. В некоторых случаях наблюдают несколько точек эквивалентности, следующих одна за другой, например, при титровании многоосновных кислот или же при титровании раствора, в котором присутствует несколько определяемых ионов.

На графике кривой титрования присутствует одна или несколько точек перегиба, соответствующих точкам эквивалентности.

Точкой окончания титрования (подобна точке эквивалентности, но не то же самое) считают момент, при котором индикатор изменяет свой цвет при колориметрическом титровании.

Для фиксирования окончания титрования используют визуальные (титрование с индикатором, специфическое изменение окраски р-ра) и инструментальные методы (потенциометрические).

Индикаторы представляют собой слабые органические кислоты и основания, у которых протонированная и непротонированная формы имеют различные структуры и окраску

Алкалиметрия и ацидиметрия — важнейшие титриметрические методы определения кислот или же оснований, основанные на реакции нейтрализации:

Н+ + ОН− = Н2О

Титрование раствором щелочи называется алкалиметрией, а титрование раствором кислоты — ацидиметрией.

Соседние файлы в предмете Химия