Добавил:
kostikboritski@gmail.com Выполнение курсовых, РГР технических предметов Механического факультета. Так же чертежи по инженерной графике для МФ, УПП. Писать на почту. Дипломы по кафедре Вагоны Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по матану(1 курс).doc
Скачиваний:
104
Добавлен:
31.10.2017
Размер:
720.9 Кб
Скачать

4. Абсолютно сходящиеся ряды и их свойства.

Пусть дан знакопеременный ряд. Рассмотрим ряд, составленный из абсолютных величин его членов |a1|+|a2|+…+|an|+… Очевидно, что это ряд с положительными членами.

Ряд называется абсолютно сходящимся , если сходится ряд составленный из его членов.

Теорема. Всякий абсолютно сходящийся ряд сходится. Сумма такого ряда равна разности между суммой его плюс-ряда и суммой минус-ряда.

Доказательство.

Пусть ряд а12+…+аn+… сходится абсолютно, т.е. сходится ряд |a1|+|a2|+…+|an|+… Обозначим частичные суммы ряда из модулей его членов через Tn. Имеем Tn= Tn++ Tn- (где Tn+ - некоторая частичная сумма плюс-ряда, Tn- - частичная сумма минус-ряда.) Ввиду сходимоти ряда |a1|+|a2|+…+|an|+…его частичные суммы Tnограничены некоторым числом С. Тогда следует, Tn1+С и Tn2-С, т.е. частичные суммы минус- и плюс-ряда также ограничены сверху числом С. Согласно критерию сходимости рядов с положительными членами отсюда вытекает сходимость плюс- и минус-рядов, т.е. существуют пределы T+=lim T+k и T-=lim T-l. Если теперь

k l

из равенства перейти к пределу при n, то получим limTn=T+-T-, ч.т.д.

l

5. Условно сходящиеся ряды.

Ряд а12+…+аn+… называется условно сходящимся , если он сходится, а ряд, составленный из модулей его членов, расходится.

(теорема Римана.Если ряд сходится условно, то в результате перестаноски его членов можно получить ряд, имеющий любую сумму, а также расходящийся ряд.)

6. Ряды с комплексными членами. (cо слов Гончаренко)

Комплексное число представляется в виде a+b*i, где а – действительная часть числа, i – мнимая единица (поясняю: мнимая единица – единица, квадрат которой равен «-1»).

Если суммы действительных(аn) и мнимых (bni) частей комплексных чисел сходятся, то сходится и весь ряд комплексных чисел. (аналогичны и остальные определения.)

7. Свойства правильно сходящихся рядов: непрерывность суммы ряда, почленное дифференцирование и интегрирование. (!!предполагается равномерно сход=правильно сход).

Функция S(x) ,х является суммой ряда, если S(x) =lim n→∞ S(x) , где S(x)=f1(x)+f2(x)+…+fn(x)

Если S(x) , хL (LΩ) является суммой ряда f1(x)+f2(x)+…+fn(x)+…=n=1 fn(x) (функциональный ряд), то говорят, что рядсходится на множестве L функции S(x).

Функциональный ряд называется равномерно сходящимся на множестве L к функции S(x) , если для любого числа  существует номер N такой, что при n cразу для всех хL выполняется неравенство S(x) -Sn (x)

Если функциональный ряд сходится на множестве L , то на этом множестве сходимость не обязана быть равномерной, однако на некотором подмножестве

множества L сходимость может оказаться уже равномерной.

Признак равномерной сходимости Вейерштрасса.

Если члены функционального ряда f1(x)+f2(x)+…+fn(x)+… удовлетворяют на множестве L неравенством  fn(x)≤Сn (n=1,2…) , где Сn – члены сходящегося числовогоряда С1+С2+…+ Сn+… то функциональный ряд сходится на множестве L равномерно.

Свойства:

Если функции fn(x) непрерывны на a,b, составленный из них ряд f1(x)+f2(x)+…+fn(x)+…, то

1.Функция f(x) на a,b непрерывна

2. a bf(x)dx=. a b f1(x)dx+…+. a b fn(x) dx+…

Если fn(x) имеют непрерывную производную на a,b и на этом отрезке

а)ряд f1(x)+f2(x)+…+fn(x)+… сходится к f(x)

б)ряд f1'(x)+f2'(x)+…+fn'(x)+… сходится равномерно, то f(x) имеет на этом отрезке непрерывную производную f ' (x)= f1'(x)+f2'(x)+…+fn'(x)+…