Добавил:
kostikboritski@gmail.com Выполнение курсовых, РГР технических предметов Механического факультета. Так же чертежи по инженерной графике для МФ, УПП. Писать на почту. Дипломы по кафедре Вагоны Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по матану(1 курс).doc
Скачиваний:
104
Добавлен:
31.10.2017
Размер:
720.9 Кб
Скачать

2. Дифференциальные уравнения высших порядков. Задача Коши.

Обыкновенным дифференциальным уравнением называется выражение, связывающее независимую переменную х, функцию у и ее производные.

Порядком дифференциального уравнения называется наивысший порядок производной, входящей в это уравнение.

Дифференциальное уравнение n-го порядка вида у(n) =f(x, у, у',…у(n-1)) (*)

называется разрешенным относительно высшей производной.

Решением дифференциального уравнения n-го порядка называется всякая функция у=φ(x), определенная для значений х на конечном или бесконечном интервале , имеющая производные до n-го порядка включительно, и такая, что подстановка этой функции и ее производных в дифференциальное уравнение обращает последнее в тождество по х.

Нахождение решений дифференциального уравнения называется интегрированием этого дифференциального уравнения.

во многих случаях требуется находить решение дифференциального уравнения, удовлетворяющего некоторым дополнительным условиям, например, задача Коши состоит в отыскании решения диф. уравнения (*), определенного в некоторой окрестности точки х0 и такого, что

у(х0)= у0 , у'( х0)=у1,..., у(n-1)0)= уn-1, где у0, у1,…, уn-1 – заданные числа.

3. Линейные дифференциальные уравнения: однородные и неоднородные.

Фундаментальная система решений. Метод Лагранжа вариации постоянных.

Линейное дифференциальное ур-е n-го порядка: y(n) + a1(x) y(n-1) +…+an(x) y = b(x) наз неоднородным, если b(x)≠0; однородным уравнение наз в том случае, если b(x)=0.

Если у11(х), у22(х),… уkk(х) – решения однородного ур-я y(n) + a1(x) y(n-1) +…+an(x) y =0(*), то любая их линейная комбинация С1у1 + С2у2+…+ Сkуk, где С1, С2 – постоянные, также решение этого однородного ур-я.

Система ф-й наз линейно независимой на интервале (a,b), если ни одна из этих ф-й не может быть выражена в виде линейных комбинации остальных ф-й. Фундаментальный набор решений –это набор линейно независимых решений ур-я (*), содержащий количество ф-й, равное порядку дифференциального ур-я.

Теорема. Для того, чтобы решения у11(х), у22(х),… уkk(х) линейного однородного диф-го ур-я с непрерывными на отрезке [a,b] коэффициентами были Л.Н.З. на интервале (a,b), необходимо и достаточно, чтобы определитель Вронского

| φ1(х) φ2(х)… φn(х) |

W(x)=| … |

| φ1(n-1)(х) φ2(n-1)(х)… φn(n-1)(х)|

был отличен от нуля при любом х из [a,b].

Любое решение однородного ур-я можно представить в виде линейной комбинации фундаментального набора решений : ў=∑i=1n Ciyi , где Ci (i=1,2,…) – произвольные постоянные. (общее решение однородного диф. Ур-я(*)).

4. Связь между общим и решением однородной и неоднородной систем.

Пусть ў – общее решение однородного уравнения(*), ỳ- некоторое решение неоднородного уравнения y(n) + a1(x) y(n-1) +…+an(x) y = b(x) (**). Тогда у= ў+ ỳ - общее решение неоднородного ур-я (**). Зная общее решение неоднородного ур-я, легко найти любое его частное решение.

5. Метод Лагранжа вариации постоянной.

Сначала решается однородное линейное дифференциальное уравнение (*), соответствующее неоднородному (**): находят общее решение (*). Затем постоянную величину С, входящую в полученное общее решение, полагают новой неизвестной функцией от х: С=С(х), т.е. варьируют произвольную постоянную. Найденную ф-ю подставляют в полученное на первом этапе общее решение однородного уравнения, получаем общее решение неоднородного уравнения.