Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_All_New_КабелиСвязи.doc
Скачиваний:
160
Добавлен:
08.11.2018
Размер:
3.56 Mб
Скачать

2. Лучевая теория передачи по световодам.

Лучи света распространяются зигзагообразно по сердечнику волновода, многократно отражаясь от границы сердцевина-оболочка.

90 0 f 0 d ff0 =0 =d f=f0

Рис. 2. Распространение энергии в световодах

Здесь луч образует с поперечным сечением световода угол  и многократно отражается от границы сердцевина-оболочка под углом 2 (см. рис.2). Установлено, что между длиной волны , диаметром волновода d и углом , действует следующее соотношение: .

Рассмотрим предельные случаи распространения малых длин волн , волн, соизмеримых с диаметром световода , и критических длин волн. В первом случае ( и ) угол , отражений мало и луч стремится к прямолинейному движению вдоль световода. Во втором случае ( и ) угол , луч испытывает наибольшее количество отражений, и поступательное движение его весьма мало. При определенной длине волны наступает такой режим, когда и волна падает на оболочку световода и отражается перпендикулярно. В волноводе устанавливается режим стоячей волны, и энергия вдоль него не передается. Это свойственно случаю с критической длиной волны и критической частоты .

Таким образом, в световоде могут распространяться лишь волны длиной, меньше чем диаметр сердечника световода ().

При требуется два провода (прямой и обратный), и передача происходит по обычной двухпроводной системе. При передача происходит за счет многократного отражения волны от границ раздела двух сред с различными показателями преломления.

Однако в световоде, учитывая, что границей раздела сред сердечник-оболочка является прозрачное стекло, возможно, не только отражение оптического луча, но и проникновение его в оболочку. Для предотвращения перехода энергии в оболочку и излучения в окружающее пространство необходимо соблюдать условие полного внутреннего отражения. Реализация этого условия показана на рис. 3

Рис. 3. Условие полного внутреннего отражения

Закон преломления имеет вид: .

Необходимо чтобы .

Тогда угол полного внутреннего отражения определяется следующим образом:

,

где n1 и n2 – коэффициенты преломления сердечника и оболочки, соответственно; 1, 2 и

1, 2 – относительные магнитные и диэлектрические проницаемости.

При угле энергия, поступившая в сердечник, полностью отразится и зигзагообразно распространится по световоду.

При угле, меньшем угла полного отражения, т.е. , энергия проникает в оболочку, излучается в окружающее пространство, и передача по световоду не эффективна, т.к. имеется преломленный луч. Режим полного внутреннего отражения предопределяет условие подачи света на входной торец волоконного световода. Как видно из рис. 4 световод пропускает лишь свет, заключенный в пределах телесного угла 0, величина которого обусловлена углом полного внутреннего отражения В. Этот телесный угол характеризуется апертурой­.

Рис. 4. Схема для определения апертуры

Апертура - это угол между оптической осью и одной из образующих светового конуса, попадающего в торец волнового световода, при котором выполняется условие полного внутреннего отражения.

Апертура определяется из условия полного внутреннего отражения (рис. 4). По закону преломления , где – показатель преломления воздуха.

Тогда .

Поскольку .

Тогда .

Откуда

Обычно пользуются понятием числовой апертуры:

.

По световодам возможна передача лучей двух видов: меридиальных и косых. Меридиальные расположены в плоскости, проходящей через ось световода. Косые лучи не лежат в плоскости световода, они имеют сложные траектории прохождения в световоде.

Рассмотрим критические частоты и длины волн световодов. Выше было показано, что между длиной волны  и диаметром сердцевины световода d имеется соотношение . Учитывая, что , и используя условие полного отражения , получим . Тогда критическая длина волны определится:

.

Критическая частота: ,

где V1 - скорость распространения волны в сердечнике, – скорость света в вакууме.

Анализируя полученные соотношения, можно отметить – чем больше диаметр сердцевины d и чем сильнее отличаются n1 и n2, тем больше критическая длина волны и соответственно ниже критическая частота.

Выше изложенное дает основание сделать вывод, что при частотах выше критической f0, вся энергия поля концентрируется внутри сердечника световода и эффективно распространяется вдоль него. Ниже критической частоты энергия рассеивается в окружающем пространстве и не передается по световоду.