Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_All_New_КабелиСвязи.doc
Скачиваний:
160
Добавлен:
08.11.2018
Размер:
3.56 Mб
Скачать

2. Зоновые (внутриобластные) коаксиальные кабели

Одно коаксиальный кабель ВКПАШп-1 (2,1/9,7) предназначен для организации зоновой связи с числом каналов равным 120 с расстоянием до 600 км. По кабелю организуется двухпроводные системы передачи: 60…552 кГц – в прямом направлении и 728…1320 кГц – в обратном.

Конструктивно кабель выполняется в двух вариантах подземный ВКПАШп-1 и подвесной с встроенным тросом ВКПАШпт-1. Длина пролета 50…65 м.

Внутренний проводник выполнен из медной проволоки диаметром 2,1, изоляция – из пористого полиэтилена с внешним диаметром 9,7 мм, внешний проводник – алюминиевая трубка толщиной 0,8 мм. Защитная оболочка выполнена из светостойкого полиэтилена толщиной 2,2 мм.

В конструкцию подвесного кабеля ВКПАШпт-1 общую полиэтиленовую оболочку вмонтирован стальной трос из 49 оцинкованных стальных проволок диаметром 0,34 мм. В поперечном сечении подвесной кабель имеет форму восьмерки. Разрывное усилие троса 6800 Н.

Имеется также бронированный вариант конструкции кабеля с кругло-проволочной броней.

Электрические характеристики кабеля ВКПА-1: сопротивление внутренней жилы постоянному току – 5,2 Ом/км; внешнего 2,6 Ом/км; емкость 56 мФ/км; номинальное волновое сопротивление =75 Ом.

2. Электродинамика направляющих систем

2.1 Основные положения. Основные уравнения электромагнитного поля

Электромагнитное поле (ЭМП) определяется как особый вид материи, характеризующийся возможностью распространения в вакууме со скоростью близкой к 3108 м/с, и оказывающей силовое воздействие на заряженные частицы.

ЭМП представляет собой единство двух своих составляющих – электрического и магнитного полей. Считают, что ЭМП определено, если в каждой точке пространства известны величины и направления четырех векторов:

Е – напряженности электрического моля, В/м;

D – электрического смещения Кл/м2;

В – магнитной индукции, Тл;

М – напряженности магнитного поля А/м.

Электрическое поле характеризуется силовым воздействием, как на неподвижные, так и движущиеся заряды. Магнитное поле характеризуется силовым воздействием лишь на движущиеся заряды. Электрические и магнитные поля связаны с определенными количествами э/м энергии.

Для векторов электромагнитного поля в вакууме справедливы соотношения:

; ,

где – электрическая постоянная; – магнитная постоянная.

Среды, в которых распространяются электромагнитные волны, принято характеризовать макроскопическими параметрами, к которым относятся: а – абсолютная диэлектрическая проницаемость; а – абсолютная магнитная проницаемость;  – удельная проводимость. Для удобства сравнения свойств реальных сред с вакуумом вводят относительную проницаемости:

; .

Закон Ома в дифференциальной форме:

.

Источником ЭМП являются свободные заряды и токи. Свободными считаются заряды, способные под воздействием электрического тока перемещаться на макроскопические расстояния (электроны в металлах, ионы в электролитах).

Основные уравнения ЭМП, называемые уравнениями Максвелла, обобщают два основных закона электродинамики, закон полного тока и закон э/м индукции.

Закон полного тока устанавливает количественное соотношение между вектором напряженности магнитного поля Н и электрическим током

. (2.1)

Согласно этому закону линейный интеграл напряженности магнитного поля по любому замкнутому контуру равен полному току, проходящему сквозь поверхность, ограниченную этим контуром. Ток I включает в себя ток проводимости и ток смещения (I = Iпр + Iсм). Данное уравнение называют первым уравнением Максвелла. Это уравнение количественно характеризует магнитное поле, возникающее при движении электричества и изменении электрического поля.

Закон э/м индукции открытый Фарадеем устанавливает соотношение между напряженностью электрического поля Е и магнитным потоком . В соответствии с законом э/м индукции электродвижущая сила, возникает в контуре при изменении магнитного потока Ф, проходящего сквозь поверхность, ограниченную контуром, равна скорости изменения этого потока со знаком минус.

. (2.2)

Это уравнение называют вторым уравнение Максвелла.

Поток электрического смещения через любую замкнутую поверхность равен электрическому заряду, заключенном внутри этой поверхности:

, (2.3)

где – плотность электрического заряда.

Это соотношение из электростатики известно как теорема Гаусса. Оно устанавливает, что электрические заряды служат истоками и стоками электрического поля.

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю. Линии вектора В замкнуты, либо уходят в бесконечность:

. (2.4)

Из этого уравнения вытекает, что магнитные заряды в природе отсутствуют.

Уравнения (2.1)–(2.4) представлены в интегральной форме. Для решения практических задач большое значение имеют уравнения Максвелла, записанные в дифференциальной форме:

, (2.5)

, (2.6)

, (2.7)

, (2.8)

где – вектор плотности тока проводимости.

Уравнения Максвелла дополняются материальными уравнениями среды

На границе между материальными телами параметры среды , ,  скачкооб­разно изменяются. Согласно материальным уравнениям среды, испытывают скачки некоторые векторные поля.

Для решения задач электродинамики, помимо уравнений Максвелла, необходимо знать граничные условия – соотношения между векторами поля в двух очень близких точках, находящихся по обе стороны границы раздела двух сред. Граничные условия являются следствием уравнений Максвелла для этого особого случая. Особый интерес представляют границы разнородных сред, присутствующие в большинстве практических задач. Например, граница металл–диэлектрик (кабель, волновод), диэлектрик (1) – диэлектрик (2), волоконный световод и другие.

Рассмотрим отдельно граничные условия для электрических магнитных полей. При этом на границе имеют место быть, как нормальные (Еn, Нn), так и касательные (Е, Н) составляющие полей.

Для электрического поля на границе раздела двух сред имеет место равенство векторов электрического смещения для нормальных составляющих (D1n= D2n), и напряженности электрического поля для касательных составляющих (Е1= Е2).

Если на границе раздела сред расположен поверхностный заряд s, то нормальные составляющие векторов электрической индукции испытывают скачек на величину поверхностного заряда: D1nD2n = s

Для магнитного поля на границе раздела сред имеется равенство векторов магнитной индукции для нормальных составляющих (B1n= B2n) и напряженности магнитного поля для касательных составляющих (H1= H2). При наличии поверхностного тока на границе раздела сред (js) касательная составляющая напряженности магнитного поля испытывает разрыв, равный его плотности: H1H2 = js

Таким образом, в общем случае граничные условия записываются:

D1n – D2n = s ; Е1 = Е2;

B1n= B2n ; H1 – H2 = js .

В случае отсутствия поверхностных зарядов s и поверхностных токов js действует равенство всех приведенных компонент.

При изучении переменных ЭМП на поверхности металлических тел часто предполагают, что рассматриваемое тело является идеально проводящим (  ). В этом случае напряженность электрического поля внутри проводника равна нулю. Тогда для проводящей среды, например второй D2 = E2 = B2 = H2 = 0 и выше приведенные уравнения примут вид: E1 = 0; B1n = 0; H1 = js (соответственно Н1n=0).

Энергия ЭМП

Запас электромагнитной энергии в объеме V определяется выражением:

,

где – энергия электрического поля в единице объема; – энергия магнитного поля в единице объема.

За изменение электромагнитной энергии в объеме отвечает теорема Умова–Пойтинга:

,

где – поверхность, ограничивающая объем V; – вектор Пойтинга.

Левая часть теоремы Умова–Пойтинга характеризует уход электромагнитной энергии из объема за единицу времени, правая – показывает, на что расходуется энергия, заключенная в объеме, за единицу времени. Первый член правой части представляет собой поток энергии, уходящий через замкнутую поверхность S объема V в единицу времени. Согласно закону Джоуля-Ленца второй член в правой части выражает энергию, преобра­зовываемую в тепло за единицу времени.