Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8. Теория СМО.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
152.86 Кб
Скачать

8.3. Смо с ожиданием

Рассмотрим аналитические модели СМО с ожиданием (наиболее распространенные СМО, в которых требования, по­ступившие в момент, когда все обслуживающие единицы заня­ты, становятся в очередь и обслуживаются по мере освобожде­ния обслуживающих единиц).

Задачи с очередями являются типичными в производствен­ных условиях, например при организации наладочных и ремон­тных работ, при многостаночном обслуживании и т.д.

Постановка задачи в общем виде выглядит следующим образом.

Система состоит из n обслуживающих каналов. Каждый из них может одновременно обслуживать только одно требование. В систему поступает простейший (пуассоновский) поток требо­ваний с параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не мень­ше n требований (т.е. все каналы заняты), то это требование ста­новится в очередь и ждет начала обслуживания. Время обслуживания каждого требования tоб является слу­чайной величиной, которая подчиняется экспоненциальному закону распределения с параметром .

Как отмечалось выше, СМО с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые. Особенности функционирования каждой из этих двух ви­дов систем накладывают свой оттенок на используемый матема­тический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей со­стояний СМО (формулы Эрланга).

8.3.1. Замкнутая смо с ожиданием

Поскольку система замкнутая, то к постановке задачи сле­дует добавить условие: поток поступающих требований ограни­чен, т.е. в системе обслуживания одновременно не может нахо­диться больше m требований (m – число обслуживаемых объек­тов).

Такую систему можно классифицировать как многоканальную СМО (n – каналов) и ограниченной данной очереди l, причем n + l = m.

Граф состояний такой системы изображен на рис. 8.2.

Рис. 8.2. Граф состояний многоканальной СМО с ограниченной очередью

Состояния данной системы означают:

S0 – отсутствие требований в системе;

S1 – одно требование обслуживается, очереди нет;

S2 – два требования обслуживаются, очереди нет;

…………………………………………………….

Sn n требований обслуживаются, очереди нет;

Sn+1n требований обслуживаются, одно требование стоит в очереди;

…………………………………………………….

Sn+l n требований обслуживаются, l требований стоят в очереди.

Система уравнений вероятностей состояний в стационарном режиме для цепочки S0 Sn будет:

Для цепочки состояний Sn+1Sn+l система уравнений стационарного режима будет:

В качестве основных критериев, характеризующих качество функционирования рассматриваемой системы, выберем: 1) от­ношение средней длины очереди к наибольшему числу требова­ний, находящихся одновременно в обслуживающей системе – коэффициент простоя обслуживаемого объекта; 2) отношение среднего числа незанятых обслуживающих каналов к их общему числу – коэффициент простоя обслуживаемого канала.

Рассмотрим расчет необходимых вероятностных характе­ристик (показателей качества функционирования) замкнутой СМО.

1. Вероятность того, что в системе находится k требований при условии, когда их число не превышает числа обслуживаю­щих аппаратов п:

Pk=αkP0, (1kn),

где αk= или αk=;

;

– интенсивность поступления требований в си­стему от одного источника;

об – средняя продолжительность обслуживания одного требования;

т – наибольшее возможное число требований, находящих­ся в обслуживающей системе одновременно (m=n+l);

п – число обслуживающих аппаратов;

Р0 – вероятность того, что все обслуживающие аппараты свободны.

2. Вероятность того, что в системе находится k требований при условии, когда их число больше числа обслуживающих ап­паратов:

Pk=kP0, (nkm),

где k=(об)k или αk=.

3. Вероятность того, что все обслуживающие аппараты сво­бодны, определяется из условия

4. Среднее число требований, ожидающих начала обслужи­вания (средняя длина очереди):

.

5. Коэффициент простоя требования в ожидании обслужи­вания:

a1=.

6. Вероятность того, что все обслуживающие аппараты заняты:

Pотк= .

7. Среднее число требований, находящихся в обслуживающей системе (обслуживаемых и ожидающих обслуживания):

A2= =.

8. Коэффициент полного простоя требований на обслуживании и в ожидании обслуживания:

a2=.

9. Среднее время простоя требования в очереди на обслуживание:

Tож=a1/.

10. Среднее число свободных обслуживающих аппаратов:

A3=.

11 . Коэффициент простоя обслуживающих аппаратов:

a3 = .

12. Вероятность того, что число требований, ожидаю­щих обслуживания, больше некоторого числа В (вероятность того, что в очереди на обслуживание находится более В тре­бований):

P-B == .

Рассмотрим пример расчета характеристик замкнутой СМО.

Пример 8.1. Оптовый склад строительных материалов обслу­живает шесть предприятий-потребителей материалов. Каждый из потребителей направляет на склад автомашину за мате­риалами в среднем один раз в смену (продолжительность сме­ны 8 ч). На складе имеется один автопогрузчик, который исполь­зуется только для погрузки материалов на прибывающие авто­машины. Прибывшая на склад автомашина становится в оче­редь, если автопогрузчик занят погрузкой другой автомашины. Обработка статистических данных о продолжительности погруз­ки одной автомашины и проверка соответствующей гипотезы по­казали, что продолжительность погрузки одной автомашины подчиняется показательному закону распределения и составля­ет в среднем 48 мин (0,1 смены). Статистическое исследование потока автомашин показа­ло, что число автомашин, поступающих на склад в единицу вре­мени, подчиняется пуассоновскому закону распределения. Требуется провести расчет характеристик функционирова­ния приведенной производственной системы как СМО.

Решение. Рассчитаем основные параметры системы для условий задачи.

Вероятность того, что все обслуживающие ап­параты свободны (на складе нет автомашин) определяется как P0, λ=1, μ=0,1.

Вероятность того, что на складе одна автомашина:

P1=0,1P0=0,6P0,

а вероятность того, что на складе две автомашины (одна под погрузкой, а другая в очереди):

P2=0,12P0=0,3P0.

Рассчитывая аналогично, получим: Р3=0,12Р0; Р4=0,036Р0; Р5= 0,0072Р0; Р6 = 0,0007Р0. Так как сумма вероятнос­тей нахождения системы в любом из состояний равна 1, т.е.

=1,

то P0(1 + 0,6 + 0,3 + 0,12 + 0,036 + 0,0072 + 0,0007) = 2,0639; Р0 = 1.

Отсюда находим Р0 = 0,4845.

Дальнейшие расчеты затруднений не вызывают. Напри­мер, средняя длина очереди равна

А1 =(2 - 1)Р2 + (3 - 1)Р3 + (4 - 1)Р4 + (5 - 1)Р5 + (6 - 1) Р6; А = 0,3296.