Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metodichka_Metody_tehnich_izmer_2009_Bondar.doc
Скачиваний:
49
Добавлен:
17.04.2019
Размер:
5.08 Mб
Скачать

1.3 Разностный метод

Чисто разностный метод осно­ван на сравнении измеряемой вели­чины или ее отображения с задан­ным значением однородной вели­чины, а выходной сигнал соответст­вующего средства сравнения пред­ставляет собой отображение откло­нения измеряемой величины от упо­мянутого заданного значения. Срав­нение указанных величин осуществ­ляет компаратор. Неконтролируе­мые изменения заданной величины сравнения приводят к неисключаемым погрешностям измерений [1].

Примером реализации чисто раз­ностного метода измерений является термопара, схематично изображен­ная на рисунок 3. Она состоит из двух проводников (или полупроводников) А и В с различной работой выхода электронов. При равенстве темпера­тур 0О и Gj точек соединений про­водников из проводника А в про­водник В поступит за определенное время, допустим, п электронов, а обратно, за то же время, 2п элект­ронов. При температурном равно­весии термо-э.д.с. выходная величина термопары равна 0. Один из спаев термопары является рабочим. а температуру 0о второго спая (не­рабочего, холодного) поддерживают строго постоянной.

Рисунок 3 Схема действия термопары

Если темпера­тура 01 рабочего спая возрастет до температуры 02, при которой ра­бота выхода уменьшится наполови­ну, то из проводника А в проводник В поступит 2п электронов, а обрат­но – 4п электронов. В результате на выходных зажимах возникнет раз­ность потенциалов, обусловленная возникновением термо-э.д.с, вели­чина которой зависит от разности температур 00 и 02 • Нестабильность температуры 0о предопределяет со­ответствующую погрешность изме­рений.

Шкала средства измерений мо­жет быть проградуирована как в единицах отклонения, так и в абсо­лютных значениях измеряемой ве­личины (рисунок 4).

Рисунок 4 Примеры шкал, отградуированных в абсолютных

значениях и в единицах откло­нения измеряемой

величины

Переход от одной шкалы к дру­гой не должен представлять ка­ких-либо трудностей. К примеру, термометр со шкалой, проградуированной в градусах Цельсия, пред­ставляет собой прибор, показываю­щий отклонения температуры, так как положительные и отрицатель­ные значения температуры есть не что иное, как отклонения от 0 град.С – точки таяния льда. Если вместо 0 град.С на этой шкале указать 273 К, то будет выполняться отсчет абсолют­ных значений температуры в кельвинах.

Можно выделить следующие преимущества чисто разностного метода измерений:

1. Возможность полного исполь­зования диапазона измерений уст­ройства, так как выходной сигнал отображает отклонения в обе сто­роны от заданного значения вели­чины сравнения. При необходимости коррекции нуля ее можно осущест­вить соответствующим смещением величины сравнения.

2. Достигается взаимная авто­матическая компенсация некоторых видов помех благодаря вычитанию сигналов – измеряемого и сравнения.

Описание лабораторной работы представлено в параграфе 2.

1.4 Дифференциальный метод

Дифференциальный метод (его не следует путать с методом дифференцирования, при котором определяется скорость изменения изме­ряемой величины) требует примене­ния двух симметричных элементов, образующих устройство сравнения для определения разности. Поэтому значения вторичных сигналов ото­бражения в средствах измерения, работающих по дифференциальному (разностному) методу, удваиваются. Примером может служить диффе­ренциальный конденсатор, являю­щийся основой емкостного измери­тельного преобразователя малых перемещений l в электрический сигнал. Если такой преобразователь выполнен в виде конденсатора с плоскими пластинами (рисунок 5, а) емкостью С, то его чувствительность составит

Sc = – C/(d +∆ d) ≈ – C∕d.

Дифференциальный конденсатор с плоскими пластинами схематично изображен на рисунок 5, б; его средняя пластина 2 является подвижной и связана с объектом измерений [1].

а – обычного; б – дифференциального. 1 – неподвиж­ная пластина; 2 подвижная пластина.

Рисунок 5 Схемы емкостных измерительных преобразователей

Примером реализации дифференциального метода измерения в сочетании с методом отклонений может служить следящий мембранный манометр (рисунок 6). Принцип действия мембранного манометра пояснен ранее на рисунке 2. В следящем устройстве перемещение sp, отображающее измеряемое дав­ление p, преобразуется дифферен­циальным трансформатором в на­пряжение UD. Обмотки этого тран­сформатора (как и сердечник) по­движны и перемещаются под воз­действием электропривода 5, снаб­женного системой передачи. Такой дифференциальный трансформатор выполняет функцию устройства сравнения перемещений sp (отобра­жающего измеряемую величину) и ssp (величины сравнения).

При отклонении сердечника от симметричного положения относи­тельно обмоток возникающее на­пряжение рассогласования UD уси­ливается до напряжения Uv, которое включает электропривод. Последний при вращении через систему пере­дачи смещает обмотки дифференциального трансформатора до вос­становления их симметричного рас­положения относительно сердечни­ка. При этом s = 0 (см. блок-схему сигналов на рисунке 6, б), что приво­дит к исчезновению (в пределах по­грешности) напряжения Uv, и элект­ропривод останавливается.

а – схематичное изображение; б – блок-схема сигналов. 1 – мембранный манометр; 2 – подвижные катушки дифференциального трансформатора; 3 – его неподвижные катушки; 4 – сердечник; 5 – электропривод.

Рисунок 6 Следящий мембранный манометр

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]