Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры пипии собранные.docx
Скачиваний:
43
Добавлен:
18.04.2019
Размер:
2.14 Mб
Скачать

61. Нормирование измерительной информации. Линии связи измерительных преобразователей и нормирующих измерительных преобразователей.

Этот вид обработки необходим в связи с тем, что в большинстве преобразовательных схем используются общие блоки и узлы (например аналого-цифровой преобразователь), рассчитанные на один общий диапазон входных сигналов. В то же время преобразователи имеют выходные сигналы, различающиеся не только по диапазонам, но в ряде случаев и по видам носителей и модулируемых параметров этих носителей. Приведение всех указанных сигналов к сигналу одного вида и диапазона выполняется обычно отдельными схемами или блоками. Существуют элементы нормирования либо индивидуальные для каждого канала измерения, либо групповые, обрабатывающие поочередно сигналы от нескольких преобразователей одного типа. Групповые блоки нормирования имеют на входе переключатель (коммутатор), поочередно подключающий источники сигналов.

На рисунке 2.13 показаны примеры структурных схем наиболее распространенных типов нормализующих преобразователей: для термопар; для термометров сопротивления; для дифференциально-трансформаторных преобразователей. Все они выдают сигнал постоянного напряжения U= с унифицированным диапазоном (например от 0 до 10 В). Схема для термопар (рисунок 2.13,а) включает элемент компенсации температуры холодного спая (ЭК), усилитель постоянного тока (УПТ) и элемент линеаризации (ЭЛ). Последний может отсутствовать, если функция линеаризации выполняется общим устройством обработки информации. Схема для термометров сопротивления (рисунок 2.13,б) включает мост (М), одним из плеч которого служит терморезистор RТ, и усилитель постоянного тока (УПТ). Схема для дифференциально-трансформаторных датчиков (рисунок 2.13,в) содержит усилитель переменного тока (У) и фазочувствительный выпрямитель (ФЧВ).

Н ормирующие преобразователи могут быть индивидуальными и групповыми.

Линии связи — это линии между входным преобразователем и другой частью системы. Таких линий в строгом смысле может иногда и не быть, если, скажем, входной  преобразователь размещается в нескольких сантиметрах от другой части системы. Если же он располагается на другом расстоянии от системы, то должны быть предприняты шаги к тому, чтобы линии связи не влияли либо слабо влияли на эффективность работы системы. Там, где в системе имеются существенные линии связи, требуется один или более каскадов сопряжения сигналов, чтобы малый выходной сигнал входного преобразователя усилить, подвергнуть аналого-цифровому преобразованию, фильтрации, модуляции и т. п. Это необходимо для того, чтобы информация, выдаваемая первичным преобразователем, не терялась при передаче ее к другим частям системы. Такие каскады могут включать в себя и схемы обработки сигнала, в которых содержащиеся в сигнале входного преобразователя данные подвергаются цифровой обработке, а результирующий сигнал или результаты вычислений могут быть отображены на дисплее, запомнены или использованы в целях управления. Сопряжение сигналов может осуществляться в нескольких точках системы.