Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матем 26-45.docx
Скачиваний:
9
Добавлен:
21.04.2019
Размер:
46.03 Кб
Скачать

36. Условная вероятность события. Теорема умножения вероятностей двух событий, ее обобщение на любое число событий.

Вероятность события A при условии того, что событие B произошло, называется условной вероятностью и обозначается P(A/B) или PA(B).

Теорема:

Вероятность произведения двух событий = произведению вероятности одного из них на условную вероятность другого, при условии что произойдет первое событие.

P(AB)=P(A)* PA(B)

37. Независимые события. Теорема умножения вероятностей независимых событий.

Пусть вероятность события В не зависит от появления события А.

Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, т. е. если условная вероятность события В равна его безусловной вероятности.

Итак, если событие В не зависит от события A, то событие A не зависит от события В; это означает, что свойство независимости событий взаимно.

Для независимых событий теорема умножения Р (АВ) = Р (А) РA (В) имеет вид

Р (АВ) = Р (А) Р (В), (**)

т. е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Равенство (**) принимают в качестве определения независимых событий.

Два события называют независимыми, если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми.

Несколько событий называют попарно независимыми, если каждые два из них независимы. Например, события А, В, С попарно независимы, если независимы события А и В, А и С, В и С.

Приведем теперь следствие из теоремы умножения.

С л е д с т в и е. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р (А1А2 ... Аn) = Р (А1) Р (А2) ... Р (Аn).

38. Теорема сложения вероятностей двух совместных событий.

Суммой 2-х совместных событий называют событие, состоящее в появлении либо события A, либо события B, либо обоих сразу.

Теорема. Вероятность суммы 2-х совместных событий равна сумме вероятностей этих событий без учета их совместного появления. p(A+B)=p(A)+p(B)−p(AB

Замечание: в этой теореме может существовать 2 различные ситуации.

p(A+B)=p(A)+p(B)−p(A)p(B),  где A и B - независимые;

p(A+B)=p(A)+p(B)−p(A)p(BA),  где A и B - зависимые;

39. Схема независимых испытаний (схема Бернулли). Формула Бернулли.

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е.  , а вероятность противоположного события (событие А не наступило) - буквой  .

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли