Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕНОВТ пособие 12.doc
Скачиваний:
13
Добавлен:
22.04.2019
Размер:
824.32 Кб
Скачать

5. Плазменная технология

5.1. Физические характеристики плазмы

Плазмой называется газ, значительная часть которого ионизована. При сильном нагревании любого вещества оно превращается в газ, при дальнейшем повышении температуры скорости движения частиц газа (молекул или атомов) возрастают настолько, что при взаимных столкновениях их кинетической энергии достаточно для ионизации газа. Кроме термической ионизации можно осуществить фотоионизацию (при взаимодействии с электромагнитным излучением), ионизацию бомбардировкой газа заряженными частицами и др. Название плазма было предложено в 1923 г. Л. Тонксом и И. Лэнгмюром. В плазменном состоянии в веществе, помимо нейтральных молекул и атомов, присутствуют заряженные частицы – электроны и ионы. Это делает плазму хорошим проводником электрического тока, что широко используется для различных практических целей. Для технологических целей плазма используется в основном тогда, когда требуется высокотемпературный концентрированный нагрев значительных объемов заготовки. В настоящее время в промышленности широко используется плазменная сварка, резка металлов; плазменная наплавка и напыление тугоплавких и сверх прочных металлов и сплавов, плазменная химия и т.п.

Для технологических целей получение плазмы осуществляют в плазмотронах – специальных устройствах, в которых используется электрический дуговой разряд, тлеющий разряд, высокочастотные и сверхвысокочастотные разряды, протекающие в различных плазмообразующих газах. Остановимся более детально на свойствах плазмы.

Для более точного определения плазмы используется понятие ее квазинейтральности. Квазинейтральность плазмы означает, что число положительных и отрицательных зарядов в ней почти одинаково, а возникающие в плазме электрические поля приводят к восстановлению равенства разноименных зарядов, если в силу каких-либо причин это равенство нарушается (например, вследствие тепловых флуктуаций). При уменьшении объема плазмы может наступить момент, когда число частиц будет настолько мало, что условие квазинейтральности не соблюдается. Объем, начиная с которого нарушается квазинейтральность плазмы, определяется так называемым дебаевским радиусом экранирования (по имени голландского физика П. Дебая):

, (5.1)

где kпостоянная Больцмана, температура электронов в кельвинах, n плотность электронов, eзаряд электрона.

Таким образом, чтобы плазма сохраняла квазинейтральность, ее линейные размеры должны намного превосходить дебаевский радиус . Для технологических нужд применяется плазма, в которой дебаевский радиус экранирования может достигать десятков метров.

Степень ионизации плазмы представляет собой отношение заряженных и нейтральных частиц. В реальных установках степень ионизации плазмы колеблется от 0 до 100%.

В плазме температура составляющих ее частиц может быть различной (неизотермическая плазма). Поэтому вводят понятие электронной , ионной и температуры нейтральных частиц . В плазме разряда электроны, как более легкие частицы, быстрее набирают энергию от электрического поля и их температура выше. При низких давлениях плазмы разница между температурами электронов и ионов может достигать нескольких порядков. В технологических установках обычно применяют достаточно плотную плазму (n > ), для нее можно практически считать, что = = . Температура плазмы в промышленных плазмотронах достигает значений в десятки тысяч градусов. В отличие от плазмы для управляемого термоядерного синтеза, где требуется температура в сотни миллионов градусов, плазму с температурой называют низкотемпературной.