Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.doc
Скачиваний:
6
Добавлен:
22.04.2019
Размер:
1.83 Mб
Скачать

15. Векторы. Линейная комбинация, линейная зависимость и независимость векторов

В линейной алгебре вектор — это элемент векторного пространства.

В конечномерном пространстве существует конечный базис, и тогда любой вектор пространства может быть единственным образом представлен в виде разложения вида

где — это базис, а — координаты вектора в заданном базисе.

Понятие вектор в геометрии отлично от определяемого в алгебре. Различают понятие свободного и связанного (приложенного, закреплённого) вектора.

  • Связанный вектор или направленный отрезок — упорядоченная пара точек евклидова пространства.

  • Свободный вектор — класс эквивалентности направленных отрезков.

 Линейной комбинацией векторов называют вектор

     

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

 Система линейно зависима что

     Система линейно независима

Для того чтобы векторы (r > 1) были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.

16. Матрицы. Сложение, умножение, умножение на вектор

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы.

Матрицы допускают следующие алгебраические операции: сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (количество строк одной матрицы должно совпадать с количеством столбцов другой);умножение матрицы на элемент основного кольца или поля (т. н. скаляр). Относительно сложения матрицы образуют абелеву группу; если же рассматривать ещё и умножение на скаляр, то матрицы образуют векторное поле над соответствующим кольцом или полем. Для квадратных матриц матричное умножение является замкнутой операцией, поэтому квадратные матрицы одного размера образуют кольцо относительно матричного сложения и матричного умножения.

Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен bij = λaij

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен cij = aij + bij

Умножение матриц (обозначение: AB, реже со знаком умножения ) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

В одном из множителей должно быть столько же строк, сколько столбцов в другом. Если матрица A имеет размерность , B — , то размерность их произведения AB = C есть .

Векторное произведение двух векторов можно записать как произведение кососимметрической матрицы и вектора:

где

Пусть равен векторному произведению: тогда

Такая форма записи позволяет обобщить векторное произведение на высшие размерности, представляя псевдовекторы (угловая скорость, индукция и т. п.) как такие кососимметричные матрицы. Ясно, что такие физические величины будут иметь n(n − 1) / 2 независимых компонент в n-мерном пространстве. В трёхмерном пространстве получаются три независимые компоненты, поэтому такие величины можно представлять как векторы этого пространства.

С такой формой записи также зачастую проще работать (например, в en:epipolar geometry).

Из общих свойств векторного произведения следует, что   и  

а так как кососимметрична, то

В 3-хмерном случае можно определить векторное произведение матриц и произведение матрицы на вектор. Это делает очевидным указанный выше изоморфизм и позволяет упростить многие выкладки. Представим матрицу A как столбец векторов, тогда .

Умножение матрицы на вектор слева определяется аналогично, если представить A как строку векторов. Транспонирование матрицы, соответственно, переводит строку векторов в столбец векторов, и наоборот. Легко обобщить многие соотношения для векторов на соотношения для векторов и матриц, например (A — матрица, ,  — векторы):

После этого можно изменить форму записи для векторного произведения:

E — единичная матрица. Отсюда очевидны существование и вид матрицы, соответствующей векторному умножению на вектор слева. Аналогично можно получить выражение для матрицы умножения на вектор справа.