Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.doc
Скачиваний:
6
Добавлен:
22.04.2019
Размер:
1.83 Mб
Скачать

20. Метод Гаусса решения систем линейных уравнений

Процесс решения системы линейных алгебраических уравнений по методу Гаусса состоит из двух этапов.

Первый этап (прямой ход метода) – система приводится к треугольному виду.

Второй этап (обратный ход) – неизвестные определяются последовательно, начиная с последнего неизвестного и кончая первым.

Аналогично, эту идею последовательного исключения можно применить и в случае матрицы А(mxm) размера больше 3х3.

Без ограничения общности можно считать, что в нашей системе ведущий элемент a11 0 первого шага (иначе просто переставим уравнение). На первом шаге мы просто исключим х1 из всех уравнений, начиная со второго, для чего из второго уравнения почленно вычтем первое, умноженное на а2111, из третьего почленно вычтем первое, помноженное на а3111 и т.д.. Тогда система заменится эквивалентной системой:

<>

Коэффициенты при неизвестных и свободные члены в последних m-1 уравнениях системы, определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a11 0

На втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22(1) (если a22(1) 0)

Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Матрица этой системы имеет вид

На этом прямой ход метода Гаусса заканчивается. Второй этап – обратный ход, заключается в решении треугольной системы. Из последнего уравнения находим xm. По найденному xm из (m-1) уравнения находим xm-1. Затем по xm-1 и xm из (m-2) уравнения находим xm-2. Процесс продолжаем, пока не найдем x1 из первого уравнения.

Если у нас число уравнений меньше числа неизвестных, то мы придем не к треугольной системе, а к ступенчатой.

так как прямой ход метода Гаусса прервется, когда уравнения закончатся, а неизвестные еще останутся. В таком случае в каждом уравнении системы перенесем все члены с неизвестными xk+1,….,xm в правую часть.

Придавая неизвестным xk+1,….,xm (называемым свободными) произвольные значения, получим треугольную систему из которой последовательно найдем все остальные неизвестные (называемые базисными). Так как произвольные значения можно придавать любыми способами, система будет иметь бесчисленное множество значений.

21. Числовая прямая, модуль числа и его геометрический смысл, неравенство треугольника

Числовая ось, или числовая прямая — это прямая, на которой выбраны:

некоторая точка O — начало отсчёта;

положительное направление, указанное стрелкой;

масштаб для измерения длин.

Между вещественными числами и числовой осью устанавливается взаимно однозначное соответствие: начало координат соответствует нулю, числовое значение произвольной точки соответствует расстоянию её до начала координат — в положительном направлении со знаком плюс, иначе — со знаком минус.[1] Таким образом, числовая ось состоит из точки начала координат и двух расходящихся от неё лучей, один из которых соответствует положительным, а другой — отрицательным числам. Естественный порядок точек на прямой при таком соответствии согласуется с упорядоченностью чисел.

Числовая прямая часто используется как наглядный образ множества вещественных чисел (например, для построения графиков). Отрезки прямой при этом изображают числовые интервалы.

Модулем неотрицательного действительного числа a называют само это число:

|а| = а

Модулем отрицательного действительного числа х называют противоположное число:

|а| = - а

Короче это записывают так:

Модулем числа а называют расстояние (в единичных отрезках) от начала координат до точки А(а).

Модуль числа 5 равен 5 так как точка В(5) удалена от начала отсчета на 5 единичных отрезков. Пишут: |5| = 5

Расстояние точки М(-6) от начала отсчета О равно 6 единичным отрезкам. Число 6 называют модулем числа -6. Пишут: |-6| = 6

Модуль числа не может быть отрицательным. Для положительного числа и нуля он равен самому числу, а для отрицательного – противоположному числу. Противоположные числа имеют равные модули:

|-а| = |а|

Модуль числа 0 равен 0, так как точка с координатой 0 совпадает с началом отсчета 0, т.е. удалена от нее на 0 единичных отрезков:

|0| = 0

На практике используют различные свойства модулей:

|а| ? 0

|а·b| = |а| · |b|

|а|n = аn , n є Z, a ? 0, n > 0

|а| = | - а|

|а + b| ? |а| + |b|

|а·q| = q·|а| , где q - положительное число

|а|2 = а2

Значение |a - b|  равно расстоянию на числовой прямой между точками, изображающими числа a и b.

Нера́венство треуго́льника утверждает, что длина любой стороны треугольника всегда не превосходит сумму длин двух его других сторон.

Пусть дан треугольник ΔABC. Тогда причём равенство | AC | = | AB | + | BC | достигается только тогда, когда треугольник вырожден, и точка B лежит строго между A и C.