Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия.docx
Скачиваний:
9
Добавлен:
24.04.2019
Размер:
332.69 Кб
Скачать

Первый закон Фарадея

Основная статьяЗаконы электролиза Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности   называетсяэлектрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

 (1)

 (2)

 (3)

 (4)

, где z — валентность атома (иона) вещества, e — заряд электрона (5)

Подставляя (2)-(5) в (1), получим

где   — постоянная Фарадея.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где   — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

где   — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль  — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А  — время, в течение которого проводился электролиз, с;   — постоянная ФарадеяКл·моль−1;   — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

33. Полимеры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинныемакромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

В химии олигомер (греч. ολιγος — малый, немногий, незначительный; μέρος - часть) — молекула в виде цепочки из небольшого числа одинаковых составных звеньев. Этим олигомеры отличаются от полимеров, в которых число звеньев теоретически не ограничено. Верхний предел молекулярной массы олигомера зависит от его химических свойств. Свойства олигомеров сильно зависят от изменения количества повторяющихся звеньев в молекуле и природы концевых групп; с момента, когда химические свойства перестают изменяться с увеличением длины цепочки, вещество называется полимером.

Молекулы, способные образовывать цепочки в результате реакции полимеризацииназываются мономерами. При олигомеризации химический процесс формирования цепочки из мономеров протекает только до достижения определенной степени полимеризации (обычно в пределах от 10 до 100).