Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кинем пары2.doc
Скачиваний:
12
Добавлен:
25.04.2019
Размер:
752.64 Кб
Скачать

17. Ременная передача. Основные элементы механизма.

2

Рис. 14.1. Схема ременной передачи

Классификация передач

По принципу работы различаются передачи трением (большинство передач) и зацеплением (зубчато-ременные). Передачи зубчатыми ремнями по своим свойствам существенно отличаются от передач трением.

Ремни передач трением по форме поперечного сечения подразделяют на плоские, клиновые, поликлиновые, круглые, квадратные.

Условием работы ременных передач трением является наличие натяжения ремня, которое можно осуществить следующими способами: 1) предварительным упругим растяжением ремня; 2) перемещением одного из шкивов относительно другого; 3) натяжным роликом; 4) автоматическим устройством, обеспечивающим регулирование натяжения в зависимости от передаваемой нагрузки.

При первом способе натяжение назначается по наибольшей нагрузке с запасом на вытяжку ремня, при втором и третьем способах запас на вытяжку выбирают меньше, при четвертом — натяжение изменяется автоматически в зависимости от нагрузки, что обеспечивает наилучшие условия для работы ремня.

Клиновые, поликлиновые, зубчатые и быстроходные плоские изготовляют бесконечными замкнутыми. Плоские ремни преимущественно выпускают конечными в виде длинных лент. Концы таких ремней склеивают, сшивают или соединяют металлическими скобами. Места соединения ремней вызывают динамические нагрузки, что ограничивает скорость ремня. Разрушение этих ремней происходит, как правило, по месту соединения.

Достоинства ременных передач трением: 1) возможность передачи движения на значительные расстояния; 2) возможность работы с высокими скоростями; 3) плавность и малошумность работы; 4) предохранение механизмов от резких колебаний нагрузки и ударов; 5) защита от перегрузки в результате проскальзывания ремня по шкиву; 6) простота конструкции, отсутствие необходимости смазочной системы; 7) малая стоимость.

- Основные характеристики

  • Мощности:

    • 0,3…50 кВт

    • свыше 300 кВт редко — большие размеры

  • Скорости и передаточные отношения:

    • 5…30 м/с

    • до 80…100 м/с — новые материалы и более совершенные конструкции

    • перед. отнош. 4…5

    • перед. отнош. до 10 (клиноремённые, плоскоремённые с натяжным роликом)

  • Области рационального применения:

    • высокие скорости и плавность работы

  • Межосевое расстояние:

    • угол обхвата на малом шкиве не меньше 150°

    • оптимальное aопт=2(d1+d2)

    • в клиноременных amin=0,55(d1+d2)+h

Примечание: d1 и d2 — диаметры малого и большого шкивов соответственно, h — высота сечения ремня

19. Подшипники качения и скольжения, их конструктивное устройство. Области применения.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на­стоящее время немыслимы без подшипников качения. Подшипники качения — это опоры вращающихся или качающихся де­талей. 

Подшипником скольжения называют опору для поддержания вала (или вращающейся оси). В таком подшипнике цапфа вращающегося вала (или оси) проскальзывает по опоре. Подшипники скольжения предназначены для восприятия радиальной нагрузки. В таких подшипниках поверхности цапфы вала (или оси) и подшипника находятся в условиях относительного скольжения. При этом возникает трение, кото­рое приводит к изнашиванию пары вал (ось) — подшипник. Подшипники бывают неразъемные и разъемные.

Область применения:

- Для валов с ударными и вибрационными нагрузками (двигатели внутреннего сгорания, молоты и др.).

- Для коленчатых валов, когда по условиям сборки необходимы разъемные подшипники.

- Для валов больших диаметров, для которых отсутствуют подшипники качения.

- Для высокоскоростных валов, когда подшипники качения непригодны вследствие малого ресурса (центрифуги и др.).

- При очень высоких требованиях к точности и равномерности вращения (шпиндели станков и др.).

- В тихоходных машинах, бытовой технике.

- При работе в воде и агрессивных средах, в которых подшипники качения непригодны.