Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по сопр.docx
Скачиваний:
3
Добавлен:
26.04.2019
Размер:
773.47 Кб
Скачать

11. Ядро сечения

в сопротивлении материалов, область вокруг центра тяжести поперечного сечения стержня, ограниченная замкнутым контуром и обладающая тем свойством, что продольная сила, приложенная к любой её точке, вызывает в сечении напряжения одного знака.

Здесь вводится понятие о так называемом ядре сечения. Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

   Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

 Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

   Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки   и   и вычислить координаты   и   точки приложения силы по формулам, вытекающим из известных зависимостей:

 

это и будут координаты точек контура ядра   и  .

12. Построение эпюр крутящих моментов.

Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала. Крутящий момент Мк в сечении вала числено равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения, при этом могут рассматриваться как левая, так и правая отсеченные части вала.

Построить эпюру крутящих моментов для жестко защемленного стержня (рис.5.4, а).

                                                  Рис.5.4

 

Решение.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

1. Намечаем характерные сечения.

2. Определяем крутящий момент в каждом характерном сечении.

13.Кручение с изгибом

При изгибе с кручением в поперечном сечении возникают нормальные напряжения от изгиба в двух плоскостях, а так же касательные напряжения от кручения и изгиба.

Для расчета вала в первую очередь необходимо установить опасные сечения. Для этого строят эпюры изгибающих моментов и крутящего момента, предварительно разложив нагрузки на составляющие вдоль координатных осей (рис. 2.7.2)

Изгиб вала круглого и кольцевого поперечного сечения под действием изгибающих моментов   и   можно привести к прямому изгибу под действием результирующего (суммарного) изгибающего момента (рис. 2.7.3, а)

 (2.7.1)

Вектор момента М в разных сечениях может иметь различные направления, в силу чего даже при отсутствии распределенных нагрузок эпюра М может быть криволинейной. Но при построении эпюры М обычно несколько завышают значения суммарного изгибающего момента, делая данные эпюры прямолинейными. Вычисляются значения суммарных моментов лишь для тех сечений, где на эпюрах   и (или)   есть переломы. Эти величины откладывают в масштабе по одну сторону от оси на эпюре М и соединяют прямой линией.

Рис. 2.7.2

После построений эпюр суммарных изгибающих моментов и крутящих моментов определяют опасное сечение.

Опасной точкой в сечении вала круглого или кольцевого поперечного сечения, очевидно, будет точка, наиболее удаленная от центра сечения (рис. 2.7.3, б). В данной точке одновременно и нормальное напряжение от изгиба и касательное напряжение от кручения имеет наибольшее значение

;