Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кр.doc
Скачиваний:
26
Добавлен:
01.04.2014
Размер:
366.08 Кб
Скачать

1. Элементы линейной алгебры и аналитической геометрии

1. Даны векторы a(a1; a2; a3), b(b1; b2; b3), c(c1; c2; c3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.

a (4;5;2), b (3;0;1), c (-1;4;2), d (5;7;8).

Векторы a, b, c образуют базис в пространстве R3 в том случае, если равенство a + b + c = 0 выполняется лишь тогда, когда  =  =  = 0.

Рассмотрим это условие:

(4;5;2) + (3;0;1) + (-1;4;2) = (0;0;0) или

Рассмотрим матрицу данной системы и приведем ее к треугольному виду:

Умножим первую строку на -5, вторую на 4 и сложим их, умножим третью строку на -2 и сложим с первой ; умножим третью строку на 15 и сложим со второй строкой.

Так как число ненулевых строк в треугольной матрице равно числу переменных, то система имеет единственное решение, а именно  =  =  = 0. Значит, векторы a, b, c образуют базис. Вектор d в базисе a, b, c имеет вид:

1a + 1b + 1c = d.

В расширенном виде:

Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду (см. предыдущие действия):

Получим систему:

Значит, вектор d в базисе a, b, c имеет координаты d(-1;4;3).

11. Даны координаты вершины пирамиды а1а2а3а4 .Найти:

1) длину ребра А1А2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнения высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3;1;4), А2(-1;6;1),А3(-1;1;6), А4(0;4;-1)

  1. Длина ребра А1А2 равна расстоянию между этими точками, которое находится по формуле : А

  1. Угол между рёбрами А1А2 и А1А4 равен углу между векторами А1А2 и А1А4. Найдём координаты этих векторов.

А1А2 =(-1-3;6-1;1-4)=(-4;5;-3)

А1А4=(0-3;4-1;-1-4)=(-3;3;-5)

Тогда, если φ угол между векторами А1А2 и А1А4, то

Тогда

  1. Угол между ребром А1А4 и гранью А1А2А3 найдём следующим образом: для начала узнаем уравнение грани А1А2А3, затем выпишем нормальный вектор этой грани, найдём угол между нормалью к грани А1А2А3 и вектором А1А4. Тогда искомый угол между гранью А1А2А3 и вектором А1А4 есть разность 900 и полученного последнего угла.

Уравнение плоскости А1А2А3 получим как уравнение плоскости, проходящей через три точки, а именно

или

Значит, нормальный вектор будет иметь координаты N=(1;2;2). Найдём угол между нормалью к грани А1А2А3 и вектором А1А4.

Тогда

Значит, угол между гранью А1А2А3 и вектором А1А4 равен 20,80.

  1. Найдём координаты векторов А1А2 и А1А3.

А1А2 =(-1-3;6-1;1-4)=(-4;5;-3)

А1А3=(-1-3;1-1;6-4)=(-4;0;2)

Тогда площадь грани А1А2А3 будет равна

ед2

  1. Объём треугольной пирамиды равен одной шестой объема параллелепипеда, построенного на рёбрах А1А2 , А1А3, А1А4. Тогда

(ед3)

  1. Уравнение прямой А1А2 имеет вид: , где (x0;y0;z0 ) – координаты точки, через которую проходит прямая, а (l;m;n) – координаты направляющего вектора. За координаты (x0;y0;z0 ) можно выбрать координаты точки А1, а за направляющий вектор взять вектор А1А2. Тогда получим:

–уравнение прямой А1А2 в симметричном виде.

  1. Уравнение плоскости А1А2А3 было найдено в пункте 3), а именно

–уравнение плоскости в нормальном виде.

  1. Высота, опущенная из вершины А4 на грань А1А2А3 имеет своим направляющим вектором нормальный вектор плоскости А1А2А3 , а значит

- уравнение высоты в симметричном виде.

Сделаем чертёж.