Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика экзамен.docx
Скачиваний:
12
Добавлен:
05.08.2019
Размер:
162.77 Кб
Скачать

24) Абота по перемещению проводника и контура с током в магнитном поле

На проводник с током в магнитном поле действуют силы, определяемые законом Ампера и проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током. Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпен╜дикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение ≈ по закону Ампера равна

Под действием этой силы проводник переместится параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна

25)Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Намагниченность вещества. Свойство намагниченности вещества. Напряженность магнитного поля

      Все природные вещества в той или иной мере обладают магнитными свойствами, эти вещества называют магнетиками. Частными случаями магнетиков являются пара- и диамагнетики, ферромагнетики и антиферромагнетики...

      В начале исследования магнетизма для объяснения свойств постоянных магнитов Ампер выдвинул смелую по тем временам гипотезу о существовании так называемых "молекулярных токов", совокупность которых объясняет магнитные свойства вещества. В настоящее время гипотеза Ампера представляется чуть ли не очевидной, физические механизмы, ответственные за магнитные свойства веществ, изучены значительно более глубоко, чем это было возможно во времена Ампера. Магнитным свойством веществ посвящены многие специальные руководства.

      Рассмотрим достаточно малый объем вещества. Допустим, что суммарный магнитный момент молекулярных токов (магнитных диполей) в этом объеме равен . В качестве количественной характеристики магнитного состояния среды примем по определению величину намагниченности   .

     В соответствии с определением (4.46) намагниченность (вектор намагничения) представляет собой магнитный момент единицы объема среды. Намагниченность является локальной характеристикой среды, она определяется в каждой точке пространства и образует соответствующее векторное поле.

      Если магнитный момент элементарного молекулярного тока равен , где - порядковый номер этого тока в совокупности молекулярных токов объема , то легко получить:

Магнитные моменты электронов и атомов.Рассматривая действи; магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действи; магнитного поля на атомы и молекулы вещества.Опыт показывает, что все вещества, помещенные в магнитное поле, намагничиваются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом pm=ISn, модуль которого

Намагни́ченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества: .Здесь, M — вектор намагниченности; m вектор магнитного момента; V — объём.

Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: , где μ0 - магнитная постоянная

26) Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор.

Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (физических, биологических и т.д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление "насыщения", а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

ТОЧКА КЮРИ — температура, выше которой ферромагнитные вещества превращаются в парамагнитные (см. Ферромагнетизм , Парамагнетизм). Названа в честь Кюри, открывшего в 1895 г. явление исчезновения ферромагнитных свойств при нагревании ферромагнитных материалов. Значение Т. К. для магнетита 580 °С, пирротина 300 °С, гематита 675 °С. Т. К. твердых растворов магнетита с ульвошпинелью и гематита с ильменитом зависит от их состава, уменьшаясь по мере увеличения содер. соединений титана от 580 °С (675 °С) до температур ниже 0 °С. В Т. К. испытывают скачок теплоемкость, теплопроводность и др. физ. свойства. Син.: температура Кюри.

27) Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы .

Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.

Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.

К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl2) и др.

Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).

Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждый моль вещества — суммарный магнитный момент), пропорциональный магнитной индукции H и направленный навстречу полю. Поэтому магнитная восприимчивость χ = I/H у диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость χ мала и слабо зависит как от напряжённости магнитного поля, так и от температуры. 28) Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

закон электромагнитной индукции фарадея.Изменение магнитного потока, проходящего через площадь, приводит к возникновению электрического поля вдоль контура, ограничивающего эту площадь.

Интенсивность этого электрического поля пропорциональна скорости изменения магнитного потока.

Изменить магнитный поток через контур можно тремя способами:

  • изменить площадь контура;

  • изменить интенсивность магнитного поля;

  • изменить взаимную ориентацию магнитного поля и плоскости, в которой лежит контур.

29) Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре[1] при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I: .