Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_k_Gos_ekzamenam(1).doc
Скачиваний:
16
Добавлен:
15.08.2019
Размер:
3.12 Mб
Скачать

Угловая модуляция (ум).

Угловая модуляция — это общее название для двух тесно связан­ных между собой видов модуляции — частотной (ЧМ) и фазовой (ФМ). В системах с частотной модуляцией информация передает­ся изменением мгновенной частоты несущего колебания, а при фа­зовой модуляции модулирующий сигнал непосредственно изменяет фазу несущей. Если амплитудная модуляция яв­ляется, по существу, линейным процессом, при котором не возни­кают новые частоты, если не считать смещения спектра модули­рующего сигнала в окрестность несущей частоты. При угловой модуля­ции также происходит перенос спектра, но, в отличие от AM, этот вид модуляции преобразует и форму спектра передаваемого сообщения. В большинстве случаев спектр излучаемого ЧМ или ФМ сигнала оказывается шире, чем спектр исходного модулирую­щего воздействия. Это свойство угловой модуляции создавать но­вые частотные составляющие характерно для всех форм нелиней­ных преобразований.

Угловая модуляция обычно применяется, когда требуется обес­печить высокую верность приема передаваемого сообщения. Объ­ясняется это тем, что системы с угловой модуляцией обладают по­вышенной по сравнению с AM устойчивостью к воздействию шумов и других видов помех. Известно, например, свойства ЧМ систем подавлять аддитивную шумовую помеху. Это значит, что при детек­тировании ЧМ существенно улучшается отношение сигнал/шум. Од­нако это преимущество достигается ценой ухудшения других пара­метров сигнала, в частности ценой увеличения занимаемой полосы частот. Частотная модуляция является, пожалуй, наиболее общим примером, который иллюстрирует методы повышения помехоустой­чивости систем связи, основанные на расширении спектра сигнала. Однако, как и в других помехоустойчивых системах, увеличение отношения сигнал/шум имеет место только в случае, если на входе приемника оно выше некоторого критического уровня. Ниже этого уровня отношение сигнал/шум на выходе быстро падает, так что ЧМ оказывается даже менее выгодной, чем линейные системы, такие, например, как ОМ. Повышение выигрыша ЧМ путем расши­рения занимаемой полосы частот приводит, как правило, к повы­шению порога помехоустойчивости. Разработано, однако, несколь­ко методов, позволяющих увеличить выигрыш ЧМ без изменения порога помехоустойчивости.

Для того чтобы записать ана­литические выражения для сигналов с угловой модуляцией, не­обходимо найти закон изменения полной фазы θ (t) в зависимо­сти от передаваемого сообщения.

Пусть у несущего колебания:

с0 (t) = cos [2πfсt+ ] = cos θ (t)

под воздействием передаваемого сообщения изменяется либо частота fс, либо начальная фаза при неизменной амплитуде.

При фазовой модуляции в соответствии с модулирую­щим сигналом g(t) изменяется фаза несущего колебания в пре­делах + , около :

+ ·g(t)

где, как и при AM g(t)│ 1 .

Наибольшее значение фазового сдвига называется девиацией фазы. Полная фаза θ (t) при ФМ равна:

θфм (t) = 2πfсt+ + ·g(t) (1)

Следовательно, аналитическое выражение для сигнала с фа­зовой модуляцией будет:

eфм(t)= cos [2πfсt+ + ·g(t)] (2)

При частотной модуляции в соответствии с модулирую­щим сигналом g(t) изменяется частота несущего колебания в пределах + 2πfд около fс:

f(t)= 2πfсt + 2πfд g(t) (3)

Наибольшее значение частотного отклонения 2πfд называется девиацией частоты.

Полная фаза θ (t) при ЧМ равна

θчм (t)= f(t)dt = 2πfсt+ + 2πfд g(t)dt (4)

следовательно, аналитическое выражение для сигнала с час­тотной модуляцией имеет вид:

eчм(t)= cos [2πfсt+ + 2πfд g(t)dt ] (5)

Слагаемое 2πfд g(t)dt есть составляющая полной фазы, обусловленная наличием частотной модуляции.

При частотной модуляции моду­лирующая функция отображается скоростью изменения фазы (изменением мгновенной частоты относительно fс); как изме­няется сама фаза — значения с информационной точки зрения не имеет.

Таким образом, при угловой модуляции изменение фазы не­сущего колебания по закону g(t) приводит к изменению мгно­венной частоты по закону производной от g(t); изменение же мгновенной частоты по закону g(t) приводит к изменению фазы по закону интеграла от g(t) . Это одно из основных положений теории угловой модуляции, определяющее связь между измене­нием частоты и фазы и подтверждающее общность, существую­щую между частотной и фазовой модуляцией.

Рассмотрим однотональную угловую модуляцию, когда сигнал как при ФМ, так и при ЧМ можно записать так:

eум(t)= cos [2πfсtsinFt] (6)

где β — так называемый индекс угловой модуляции;

βфм = ; βчм = 2πfд /2πF = fд / F (7)

В формуле (6) начальная фаза под знаком косинуса опу­щена, как не имеющая принципиального значения.

Таким образом, при однотональной угловой модуляции ФМ и ЧМ сигналы внешне практически неразличимы. Более того, если частота модуляции удовлетворяет соотношению: Ft= 2πfд / ,то индексы модуляции и величины девиации при ЧМ и ФМ рав­ны между собой.

Временная диаграмма сигнала при однотональной угловой модуляции может быть представлена следующим образом.

Рис.1 Угловая модуляция: а — модулирующий низкочастотный сигнал; б — однотональный сиг­нал с угловой модуляцией

Различие между структурами ЧМ и ФМ сигналов проявляет­ся, когда модулирующая функция имеет сложный спектральный состав, так как начинает сказываться то обстоятельство, что при ФМ изменение частоты — результат модуляции фазы, а при ЧМ изменение фазы — результат модуляции частоты.

Исследование спект­ральных свойств сигналов с угловой модуляцией в математичес­ком отношении существенно сложнее проведенного ранее анали­за спектральных характеристик AM сигналов. Для того чтобы получить представление об особенностях спектра колебания с угловой модуляцией, проанализируем его частотный состав для случая однотональной модуляции:

eум(t)= cos [2πfсtsinFt] (8)

Ширина спектра сигнала при угло­вой модуляции ограничена той полосой частот, в пределах ко­торой амплитуды спектральных составляющих превосходят неко­торое заранее заданное значение.

Рис. 2 Спектр простого колебания с УМ

Часто ширину спектра ЧМ колебания определяют, учитывая все гармоники, величина кото­рых превышает 1 % амплитуды немодулированного несущего. В этом случае количество учитываемых спектральных составляющих k , а ширина спектра определяется как Fчм=2F·( ). Эта формула справедлива для индексов модуляции, заключенных в пределах 0,1 24, имеющих наибольший практический ин­терес.

Если модулирующий сигнал не является однотональным, то спектр ЧМ или ФМ колебания оказывается весьма сложным. Однако в частных слу­чаях, когда β <<1 или β >>1 (естественно, с учетом наивыс­шей модулирующей частоты), ширина спектра определяется таки­ми же соотношениями, как и при тональной модуляции.

В реальных системах связи с ЧМ девиация частоты чаше всего значительно превышает ширину спектра модулирующего сигнала, так как именно при этом условии реализуется основное преимущество частотной модуляции — ее большая помехоустой­чивость. Это требует по сравнению с амплитудной модуляцией в β раз большей полосы частот канала. Поэтому частотную мо­дуляцию для целей радиосвязи применяют лишь на очень высо­ких частотах, в диапазонах метровых и более коротких волн.

Ос­тановимся кратко на особенностях дискретной модуляции.

При дискретной модуляции закодированное сообщение а, представляющее собой последовательность кодовых символов, преобразуется в последовательность элементов (посылок) сигнала u(t). В частном случае дискретная модуляция сводится к воздействию первичного сигнала b(t) на переносчик f(t).

Посредством модуляции один из параметров переносчика из­меняется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющи­мися параметрами которого являются величина и направление тока. Обычно же в качестве переносчика, как и в непрерывной модуляции, используется переменный ток (гармоническое колеба­ние). В этом случае можно получить амплитудную (AM), частот­ную (ЧМ) и фазовую (ФМ) модуляции. Дискретную модуляцию часто называют манипуляцией, а устройство, осуществляющее дискретную модуляцию (дискретный модулятор), называют ма­нипулятором или генератором сигналов.

На рис. 3 приведены формы сигналов при двоичном коде для различных видов манипуляции. При AM символу 1 соответ­ствует передача несущего колебания в течение времени Т (по­сылка), символу 0 — отсутствие колебания (пауза). При ЧМ пе­редача несущего колебания с частотой f1 соответствует символу 1, а передача колебания с частотой f0 соответствует 0. При двоичной ФМ меняется фаза несущей на 180° при каждом переходе от 1 к 0 и от 0 к 1.Наконец, на практике нашла применение система относительной фазовой модуляции (ОФМ). В отличие от ФМ, при ОФМ фаза сигналов отсчитывается не от некоторого эталона, а от фазы предыдущего элемента сигнала. В двоичном случае символ 0 передается отрезком синусоиды с начальной фа­зой предшествующего элемента сигнала, а символ 1 — таким же отрезком с начальной фазой, отличающейся от начальной фазы предшествующего элемента сигнала на 180°. При ОФМ передача начинается с посылки одного, не не­сущего информации элемента, который служит опорным сигналом для сравнения фазы последующего элемента.

В общем случае дискретную модуляцию следует рас­сматривать как преобразование первичного сигнала b(t) в определенные отрезки сигнала ui(t), где i= 0, 1, ..., m—1 — пе­редаваемые символы первичного сигнала. При этом вид отрезка сигнала ui(t), в прин­ципе, может быть произволен. В действительности его выбирают так, чтобы удовлетворить требованиям, предъявляемым к систе­ме связи (в частности, по скорости передачи и по занимаемой полосе частот), и чтобы сигналы хорошо различались с учетом воздействующих помех.

Длительность посылки первичного сигнала b(t) при дискрет­ной передаче определяет скорость передачи посылок (техничес­кую скорость или скорость телеграфирования). Эта скорость v выражается числом посылок, передаваемых за единицу времени. Измеряется техническая скорость в Бодах. Один Бод— это ско­рость, при которой за 1 с передается одна посылка. Если дли­тельность посылки Т выражена в секундах, то скорость манипуляции будет равна v=1/Т, Бод.

Рис.3 Сигналы при разных видах дискретной модуляции