Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
50602_lekcii_po_magnetizmu.doc
Скачиваний:
6
Добавлен:
15.08.2019
Размер:
1.02 Mб
Скачать

3.3. Явление взаимной индукции. @

Рассмотрим два контура 1 и 2, расположенные близко друг от друга (рис. 3.3). Пусть в контуре 1 течет ток I1. Он создает магнитный поток, пронизывающий контур 2 и пропорциональный величине самого тока I1:

Ф m21 = L21I1.

Направление силовых линий поля В1, создающего поток Фm21 изображено на рис.3.3 сплошными линиями и определяется правилом правой руки. При изменении тока I1 поток Фm21 становится переменным,и в контуре 2 индуцируется э.д.с., равная

Аналогично при протекании тока I2 в контуре 2 через контур 1 возникает магнитный поток Фm12 , пронизывающий контур 1: Фm12= L12I2.

Магнитное поле этого потока В2 изображено на рис.3.3 пунктирными линиями. Как и в первом случае, при изменениях тока I2 в контуре 1 индуцируется э.д.с., равная

К онтуры 1 и 2 называются связанными, а явление возникновения э.д.с. в одном из них при изменении силы тока в другом - взаимной индукцией.

Коэффициенты пропорциональности L12 и L21 называются взаимной индуктивностью контуров 1 и 2 соответственно:

,

где L12 и L21 - скалярные величины, равные отношению потокосцепления одного контура к силе тока в другом, обуславливающей это потокосцепление. В отсутствие ферромагнетиков для любых двух связанных контуров коэффициенты взаимной индукции равны друг другу:

.

Взаимная индуктивность также измеряется в генри. Величины коэффициентов взаимной индукции определяются геометрической формой, размерами контуров и их относительным расположением. Явление взаимной индукции используется, например, в электрических трансформаторах – устройствах, преобразующих переменный ток одного напряжения в переменный ток другого напряжения.

3.4. Энергия магнитного поля. @

Д ля определения энергии магнитного поля рассмотрим контур, состоящий из источника э.д.с. - ε, катушки индуктивности - L и сопротивления - R (рис.3.4). При замыкании цепи ток возрастает от 0 до I, и, следовательно, возникает э.д.с. самоиндукции εis, направленная против э.д.с. ε, возбуждающей ток. При размыкании цепи сила тока уменьшается от I до 0, что вызывает появление э.д.с. самоиндукции εis того же направления, что и направление внешней ε. Можно предположить, что на увеличение тока в контуре затрачивается дополнительная работа, идущая на создание энергии магнитного поля. При снижении тока эта энергия выделяется в виде дополнительного джоуль-ленцева тепла.

Пусть при замыкании контура ток меняется со скоростью dI/dt. Тогда, как мы уже знаем, в контуре индуцируется э.д.с. самоиндукции εs, равная -LdI/dt, препятствующая изменениям тока. В контуре действует также постоянная э.д.с. ε. Если за положительное направление тока принять то направление, в котором ε заставляет течь ток в контуре, то полная э.д.с. в любой момент времени будет равна ε- LdI/dt. Эта суммарная э.д.с. вызывает ток I через сопротивление R. На сопротивлении происходит падение напряжения, равное IR. Закон Ома для контура имеет вид

.

Подсчитаем работу, совершаемую источником э.д.с. за время dt. Для этого воспользуемся формулой для мощности тока N=dA/dt=Iε. Объединив два последних выражения, получим

Первое слагаемое dA1 = I2Rdt – это работа, расходуемая на нагревание проводника, т.е. тепло, выделяемое в проводнике за время dt. Второе слагаемое dA2 = LIdI – работа, обусловленная индукционными явлениями. Данная дополнительная работа, затрачиваемая на увеличение силы тока в контуре от 0 до I, находится как интеграл:

.

Полученная работа LI2/2 представляет собой собственную энергию тока в контуре с индуктивностью L.

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током. Эта энергия запасена в магнитном поле катушки так же, как энергия электрического поля запасена в заряженном конденсаторе. Таким образом,

.

В этой формуле магнитная энергия выражена через параметры, характеризующие контур с током – силу тока I и индуктивность катушки L. Ту же энергию Wm можно выразить через параметры, характеризующие само магнитное поле, а именно, напряженность поля , магнитную индукцию и объем занимаемого полем пространства V. Для этого найдем энергию магнитного поля соленоида. Воспользуемся полученным нами ранее выражением для индуктивности соленоида:

L = n2μμ0V.

Индукция магнтного поля соленоида В = nμμ0I, откуда I=B/nμμ0. Таким образом, искомая энергия:

.

Так как В= μμ0Н, то .

Если магнитное поле однородно, его энергия распределена равномерно по всему объему поля с некоторой объемной плотностью wm:

.

Последнее соотношение можно переписать в трех эквивалентных формах:

.

Если магнитное поле неоднородно, его объемная плотность меняется от точки к точке. Зная wm в каждой точке, можно найти энергию поля, заключенную в некотором объеме V. Для этого нужно вычислить интеграл:

.