Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
обучение.doc
Скачиваний:
13
Добавлен:
20.08.2019
Размер:
2.47 Mб
Скачать

Поточные и противоточные редукторы (прямого и обратного действия)

В поточном редукторе клапан открывается в том же направлении, в котором через него идет воздушный поток, в противоточном — в противоположную сторону. Поршневые редукторы за редчайшим исключением всегда имеют поточный механизм, мембранные — противоточный.

Сбалансированные и несбалансированные редукторы

В описанном выше поточном поршневом редукторе давление воз­духа из баллонов служит одной из сил, открывающей клапан. Естест­венно, с расходом воздуха в аппарате, высокое давление падает, а значит, падает и промежуточное давление, т.к. все меньших и мень­ших усилий хватает на закрывание клапана редуктора. Результат — увеличение сопротивления дыхания при уменьшении запаса возду­ха. В редукторе с противоточным клапаном наблюдается обратная ситуация — промежуточное давление растет с падением высокого. Возможны разнообразные технические решения, исключающие влияние величины высокого давления на величину промежуточного до тех пор, пока первое превышает второе. Наиболее распростране­ны следующие.

1 . Введение дополнительной поверхности поршня. Такое реше­ние, как правило, используется в мембранных редукторах. Вер­немся к схеме такового (рис. 2.7). Высокое давление действует на тарелку клапана в двух направлениях — на открытие и на за­крытие клапана. Вторая сила при этом превышает первую, так как развивается за счет давления на большую площадь. Это оз­начает, что чем ниже высокое давление, тем выше должно быть промежуточное, достаточное для закрытия клапана. Изменив форму поршня так, как показано на рис. 2.8, можно выровнять площади поверхностей, подвергающиеся воздействию высоко­го давления в сторону открытия и закрытия клапана. "Лишняя" поверхность при этом выносится в дополнительную камеру, за­полненную воздухом среднего давления. 2. Исключение воздействия высокого давления на управляющий элемент редуктора. Как правило, это решение используется в поршневых редукторах. Принципиальная схема такого реше­ния приведена на рис. 2.9. Нижняя камера здесь служит камерой высокого давления, а седло и подушка клапана меняются местами: подушка неподвижно располагается на торцевой сто­роне камеры высокого давления, а подвижным седлом служит нижняя оконечность поршня. Выход воздуха среднего давле­ния происходит из верхней камеры редуктора. При отсутствии высокого давления пружина удерживает поршень в верхнем положении — клапан открыт. При повышении давления в ниж­ней камере воздух проходит сквозь канал в поршне в верхнюю и по достижении в последней установочного давления клапан закрывается. Таким образом, полностью исключается воздей­ствие высокого давления на работу поршня. В данном случае весь поток воздуха проходит через канал в поршне, поэтому для обеспечения нормальной пропускной способности редуктора диаметр канала должен быть больше, чем в конструкции, изоб­раженной на рис. 2.6.

Расход воздуха

Расход воздуха — величина, характеризующая пропускную спо­собность редуктора. Расход воздуха измеряется количеством возду­ха в литрах, который способен пропустить через себя редуктор за одну минуту при постоянно открытом клапане. Эта величина во много раз превосходит реальный расход воздуха при погружении и характеризует возможную скорость прохождения воздуха через редуктор, которая должна превышать максимальную скорость по­тока воздуха, потребляемого легкими подводника при глубоком и резком вдохе. В противном случае в момент наиболее активного ды­хательного движения возрастает сопротивление дыханию. Боль­шинство современных редукторов имеют расход воздуха от 1 до 4 тыс. л/ мин.

Способы подсоединения редукторов к баллонам

Способы подсоединения редукторов к баллонным блокам подроб­но разобраны при описании последних. Большинство современных зарубежных производителей выпускают каждую модель редуктора как в YOKE, так и в DIN вариантах, причем они совместимы. Как пра­вило, узел крепления к баллону вкручен в редуктор с помощью стан­дартной резьбы, так что Вы можете вывинтить из редуктора струб­цину (YOKE) и вкрутить на ее место адаптер варианта DIN и наобо­рот. Впрочем, лучше не делать этого самостоятельно, а обратиться к квалифицированным специалистам. Так или иначе, приобретая ре­дуктор одного стандарта и адаптер другого, Вы можете пользоваться любым из них по своему усмотрению. Некоторые отечественные ре­дукторы имеют свой стандарт присоединения к баллонам. При необ­ходимости возможно использование дополнительных переходников с баллонов международных стандартов на наши редукторы и наобо­рот, но подобные переходники увеличивают количество соединений и размеры конструкции. Новейшая разработка отечественной про­мышленности — аппарат АВМ— 12—1 — имеет международное со­единение типа "DIN".

Выходы из редуктора

Выходы из редуктора часто именуются портами. Наиболее рас­пространенными вариантами, отвечающими современным между­народным требованиям, являются редукторы с 1 — 2 выходами высо­кого давления и 3 — 4 выходами среднего давления. Большинство ми­ровых производителей соблюдают единые стандарты обозначений и резьб портов. Порты высокого давления маркируются "HP" (high pressure) и имеют внутреннюю резьбу диаметром 7/16" (7/16 дюй­ма). Часто маркировка "HP" заменяются указанием высокого давле­ния в атмосферах на которое рассчитан редуктор, например, 200 или 300. Наличие одного выхода высокого давления обязательно для сов­ременных редукторов и необходимо для подключения выносного — расположенного на гибком шланге — манометра высокого давления (см. главу 2.10). Второй выход высокого давления может предназна­чаться для независимого подсоединения датчика давления индивиду­ального компьютера (глава 2.10). Выходы среднего давления как правило лишены маркировки и имеют стандартную внутреннюю резьбу 3/8" (иногда — 1/2"). Минимальное количество портов сред­него давления — три — предназначается для подсоединения:

  • легочного автомата;

  • компенсатора плавучести;

  • запасного легочника или клапана поддува сухого костюма.

  • Четыре порта среднего давления позволяют подключать запасной легочник и поддув сухого костюма одновременно.

Редукторы комплектуются заглушками к незадействованным портам.

Редуктор нового отечественного аппарата АВМ—12—1 — имеет 4 порта среднего давления международного стандарта — с внутрен­ней резьбой 3/8". Хорошо известные российским подводникам реду­кторы типа АВМ—5 имеют лишь один выход среднего давления, предназначенный для легочного автомата и имеющий внешнюю резьбу диаметром 18 мм. Выход высокого давления в этом редукторе отсутствует: укомплектованные ими акваланги либо имеют систему предупреждения подводника о скором окончании запаса воздуха в виде резервного механизма, как аппараты АВМ — 5 и АВМ — 7, либо в дополнение к системе резерва снабжены выносным манометром, от­ходящим прямо от баллонного блока, как в акваланге "Подвод­ник—2". Редуктор аппарата "Подводник—4" имеет выход высокого давления с внешней резьбой 14 мм и укомплектован выносным мано­метром. Выход среднего давления в этой модели также единствен­ный. Естественно, до начала свободного поступления в нашу страну снаряжения международных образцов, отечественные подводни­ки—умельцы создали различные варианты дополнительных портов для подключения жилета—компенсатора плавучести. Наиболее уда­чный вариант — подсоединение к резьбе, в которую должен вкручи­ваться предохранительный клапан редуктора, специального тройни­ка, имеющего резьбу для подсоединения предохранительного клапа­на и дополнительную резьбу для выхода среднего давления к компен­сатору. Возможен также "четверник" — с еще одним портом для за­пасного легочного автомата.

Как правильно задействовать порты редуктора?

Ответ прост: в стандартном снаряжении шланги к основному и за­пасному легочному автомату лучше всего располагать справа, а шланги поддува компенсатора и сухого гидрокостюма — слева (рис. 2.10, фото 2.8). Шланг высокого давления на манометр или компью­тер подсоединяется, как правило, с левой стороны. Во многих ино­странных редукторах есть механизм, позволяющий по вашему жела­нию выбрать оптимальное направление выходов шлангов среднего давления: та часть корпуса, на которой располагаются порты средне­го давления может поворачиваться вокруг своей продольной оси. Та­кой механизм называется турельчатым, или карусельным (swivel).

Общая компоновка редуктора

Н аиболее распространенные варианты конструкций междуна­родного стандарта представлены на фото 2.9. Форма корпуса редук­торов разнообразна, но более — менее приближена к цилиндричес­кой, так как внутри любого редуктора имеется либо цилиндрический поршень, либо дисковидная мембрана. Продольная ось корпуса ре­дуктора либо параллельна, либо перпендикулярна оси крепления к аквалангу. В первом случае вся конструкция получается более ком­пактной. Именно так устроены недорогие редукторы, сочетающие простоту и надежность (фото 2.9 А). Такая компоновка позволяет расположить по окружности 4 или 5 выходов воздуха: один порт вы­сокого давления и 3 — 4 порта среднего давления. Большее количест­во портов неудобно размещать по одной окружности, а удлинение корпуса сделает редуктор опасным для вашего затылка.

Удлинение корпуса редуктора и размещение большего количест­ва выходов возможно при перпендикулярной ориентации корпуса относительно оси крепления к баллонному блоку (фото 2.9 Б, В). В та­ком случае один или два порта высокого давления размещаются око­ло крепления к баллонам, а 4 — 5 портов среднего давления — на дру­гом конце корпуса. Необходимо добавить, что порты среднего давле­ния могут располагаться на редукторе равномерно, а также со сме­щением на одну из сторон или попарно. При задействовании четы­рех равномерно размещенных портов два шланга оказываются на­правленными под некоторым углом назад от тела пловца. Цепляясь за окружающие предметы, эти порты причиняют лишние хлопоты, особенно при передвижении в пещерах, затопленных помещениях или в зарослях водорослей.

Третий вариант общего исполнения редуктора, показанный на фото 2.9 Г, Д, весьма компактен и, к тому же, позволяет использовать 2 порта высокого давления и 4 среднего. Расположение портов в ре­дукторе такой конструкции весьма удобно — даже при полном за­действовании портов все шланги направлены в стороны или под не­большим углом вперед. Оптимальное использование выходов пока­зано на фото 2.8. Подобным образом устроен редуктор отечествен­ного аппарата АВМ —12—1.

Общая компоновка других отечественных редукторов возможна в двух вариантах. В первом случае имеется единственный выход сре­днего давления, расположенный в основании редуктора напротив предохранительного клапана (фото 2.7 В), во втором — на этом месте помещен выход высокого давления, а выход среднего находится на крышке редуктора (фото 2.7 Г).

Замерзание редуктора

В редукторе воздух, выходящий из баллонов, расширяется и при этом охлаждается. Этого охлаждения может оказаться достаточно, чтобы при положительной температуре окружающей воды темпера­тура внутри редуктора опустилась ниже нуля. Результат — выпаде­ние водяного конденсата и образование наледи на внутренних по­верхностях редуктора.

Вероятность образования наледи зависит от температуры окру­жающей среды, интенсивности вашего дыхания (чем больше расши­ряющегося воздуха проходит через редуктор, тем сильнее он охлаж­дается) и влажности воздуха в баллонах. При неблагополучном сте­чении обстоятельств, образование льда в редукторе возможно при температуре воды + 10 °С и ниже. Наледь, образовавшаяся на рабо­чей поверхности клапана или соприкасающихся поверхностях поршня и корпуса редуктора, может нарушить нормальную работу механизма — что и называется замерзанием редуктора. В зависимо­сти от конкретных обстоятельств оно может привести к избыточной либо недостаточной подаче воздуха в систему среднего давления. Первое приведет к повышению давления и может вызвать самопро­извольную подачу воздуха легочником, второе — к затруднению ды­хания вплоть до полной невозможности вдоха. Современной про­мышленностью выпускаются редукторы, приспособленные для ра­боты в холодной воде: вероятность их замерзания ничтожно мала. Наиболее подвержены замерзанию части редуктора, соприкасающиеся своими трущимися поверхносностями с водой, заполняющей камеру давления окружающей среды. Как этого избежать? Есть два способа:

1. Изолировать воду в камере давления окружающей среды от трущихся поверхностей редуктора. Так, например, устроены мембранные редукторы (рис 2.7, 2.8).

2. Изолировать камеру давления окружающей среды от окружа­ющей воды. Это решение применяется как в поршневых, так и в мембранных редукторах путем заполнения упомянутой каме­ры специальной жидкой силиконовой смазкой и герметизации ее объема посредством небольшой резиновой прокладки. Дав­ление окружающей среды передается через прокладку на сма­зку внутри камеры и затем на поршень. Имеются модели мембранно-поршневых редукторов, в кото­рых используется комбинированная защита от замерзания. Мембра­на изолирует поршень от камеры среднего давления — чтобы избе­жать нарушения работы поршня за счет замерзшего конденсата из воздуха, а камера окружающего давления заполнена незамерзаю­щей смазкой.

Фильтрация воздуха

Все редукторы снабжены фильтрующими элементами, исключа­ющими попадание твердых частиц из баллонов в регулятор. В сов­ременных редукторах международного стандарта, как правило, применяются конические фильтрующие элементы, которые позво­ляют наиболее эффективно размещать фильтрующую поверхность в потоке воздуха. В отечественных редукторах используются ци­линдрические фильтры. И те и другие приспособлены для быстрой и удобной замены.