Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОРМОНЫ.doc
Скачиваний:
3
Добавлен:
21.08.2019
Размер:
98.82 Кб
Скачать

6

ГОРМОНЫ

Способы взаимодействия сигналов и клеток мишеней многообразны

К настоящему времени известны следующие варианты действия сигналов на клетки :

1) гормональное или гемокринное, т.е. действие на клетки, расположенные далеко от

источника сигналов и использующие кровообращение для переноса сигнала от клетки производителя до отдаленной клетки - мишени.

2) изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;

3) нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;

4) паракринное — разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;

5) юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной клетки.

6) аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;

7) солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Во всех случаях, сигнал обнаруживается специфическим рецептором и преобразуется в клеточный ответ.

Таблица. 12-1 Примеры сигналов, на которые реагируют клетки

Антигены

Факторы роста

Гликопротеины поверхности клеток

Гормоны

рН, осмотическое давление

Свет

Компоненты внеклеточного матрикса

Механическое воздействие

Нейромедиаторы

Одоранты

Феромоны

Вкусовые вещества

Хотя число возможных биологических сигналов значительно (Таблица 12-1 ), клетки используют только несколько эволюционно сохраненных механизмов обнаружения внеклеточных сигналов и преобразования их во внутриклеточные изменения. В этой главе мы рассмотрим некоторые примеры главных механизмов передачи сигналов и их интеграцию в специфические биологические функции. Следует сразу подчеркнуть консервативность фундаментальных механизмов передачи биологических сигналов и адаптации этих основных связанных с мембраной процессов к широкому разнообразию сигнальных путей.

В основе взаимодействия сигнала и рецептора лежит слабое взаимодействие

Специфичность. Взаимодействие сигнала и рецептора подчиняется общим закономерностям взаимодействия лигандов и белков. Оно может быть оценено количественно методом Скэтчарда, позволяющего получить во многих случаях количественную меру сродства рецептора и сигнальной молекулы (Kd) и числа связывающих лиганды участков в молекуле рецептора. Это взаимодействие характеризуется прежде всего высокой специфичностью, которая обеспечивается комплементарностью между структурой сигнальной молекулы а и активного центра рецептора.

Сигнальная молекула комплементарна активному центру рецептора; другие сигналы не комплементарны

Кооперативность во взаимодействии лиганда и рецептора дает в результате большие изменения в активности рецептора при минимальной концентрации лиганда (подобно эффекту кооперативности при связывании кислорода с гемоглобином).

Когда ферменты активируют другие ферменты, число вовлекаемых молекул увеличивается в геометрической прогрессии в ферментных каскадах

Вторая важная особенность механизмов передачи сигнала в клетках мишенях - усиление (амплификация) сигнала. Конечный ответ клетки на сигнал определяется числом исполнительных элементов клетки (ферментов, структурных белков, переносчиков и т.д.), на которые воздействует сигнал, причем, как правило, соотношение непосредственный регулятор: исполнительный элемент равняется 1:1 (см главу 2).

Если бы сигнальные молекулы прямо взаимодействовали с исполнительными элементами , то это потребовало бы огромных количеств сигнальных молекул, перемещаемых по крови от места их образования к клеткам мишеням. Выход из этого положения - в создании механизмов усиления сигнала, с привлечением специальных ферментов и молекул, получивших название вторичных посредников

Еще одна важная особенность в механизме передачи сигнала в клетке мишени – «выключение» действия сигнала. Это достигается разными приемами, включенными в механизм передачи сигнала. Активирование рецептора при взаимодействии с сигнальной молекулой одновременно включает механизм обратной связи, который отключает рецептор (например, путем фосфорилирования молекулы рецептора) или удаляет рецептор с поверхности клетки (путем эндоцитоза) или используются специальные белки, прерывающие передачу сигнала ( G-белки) и т.д..

Если два сигнала оказывают противоположный эффект на метаболические характеристики типа концентрации вторичного посредника X, или мембранный потенциал Vм., выходящий регуляторный сигнал - результат интегрирования входящих сигналов от обоих рецепторов.

Наконец, еще одна примечательная особенность систем преобразования сигналов - интеграция, способность системы, получая многочисленные и разнообразные сигналы, выдавать интегрированный ответ, соответствующий потребностям клетки или организма.

Различные пути передачи сигналов перекрещиваются друг с другом на нескольких уровнях, создавая множество взаимодействий, что обеспечивает гомеостаз клетки и организма.