Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матрицы.docx
Скачиваний:
5
Добавлен:
24.08.2019
Размер:
129.8 Кб
Скачать

Определители 2го и 3г порядка. Определение. Теоремы разложения и аннулирования

  1. Определителем второго порядка называется число равное разности произведений элементов главной и второй диагонали:

  1. Определителем третьего порядка называется следующее выражение:

Определитель третьего порядка вычислить легко, если учесть следующее правило: со знаком плюс идут произведения троек чисел, расположенных на главной диагонали матрицы, и в вершинах треугольников с основанием параллельным этой диагонали и вершиной в противоположого угла матрицы. Со знаком минус идут тройки из второй диагонали и из треугольноков, построенных относительно этой диагонали. Следующая схема демонстрирует это правило, называемое правилом треугольников. В схеме синим (слева) отмечены элементы, чьи произведения идут со знаком плюс, а зеленым (справа) - со знаком минус.   правило Саррюса

Определители любого порядка. Свойства определителей.

Сначала опишем основные свойства определителей относительно преобразования матриц. Знание этих свойств поможет упрошать вычисления и находить определители произвольного порядка.

Свойство 1. Определитель не меняется при транспонировании. Это означает, что определитель матрицы равен определителю транспонированной матрицы (матрицы, в которой строки заменены соответствующими столбцами).

Исходя из первого свойства, в остальных свойствах мы можем говорить только о строках, подразумевая, что эти свойства применими также и к столбцам.

Свойство 2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

Свойство 3. От перестановки двух строк определитель меняет свой знак.

Свойство 4. Определитель, содержащий две одинаковые строки, равен нулю.

Свойство 5. Если все элементы некоторой строки умножить на некое число, то сам определитель умножится на это число.

Свойство 6. Определитель, содержащий две пропорциональные строки, равен нулю.

Свойство 7. Если все элементы i-й строки определителя n-го порядка представлен в виде суммы двух слагаемых: aij=bj+cj, j = 1, ..., n, то определитель равен сумме двух определителей, у которых все строки, кроме i-й, - такие же, как и в заданом определителе, а i-я строка в одном из слагаемых состоит из элементов bj, в другом - из элементов cj.

Свойство 8. Если одна из строк определителя есть линейная комбинация его других строк, то определитеь равен нулю..

Свойство 9. Определитель не меняется, если к одной из его строк прибавляется любая линейная комбинация других строк.

Теорема (о разложении определителя по строке): определитель равен сумме произведений всех элементов какой-либо строки на их алгебраические дополнения. Это означает, что определитель матрицы n×n равен   (алгебраическое дополнение Aij=(-1)i+jMij. Здесь минор Mij - определитель получаемый из основного определителя вычеркиванием i-й строки и j-го столбца)

Теорема о разложении определителя по строке позволяет свести вычисление определителя матрицы n×n к вычичлению n определителей матриц (n-1)×(n-1). Таким образом, вычисление определителей с порядком выше третьего сводится к разложению на сумму определителей третьего порядка.

С помощью описанных выше свойств определителей можно провести предварительные преобразования матрицы, облегчающие дальнейшие вычисления. Например, если перед разложением определителя n-го порядка по какой-либо строке накопить в этой строке нули, то разложение приводит к меньшему количеству определителей порядка n-1. Ниже приводится пример, в котором сначала из первой строки вычитается вторая (при этом появляются два нуля), а затем идет разложение по первой строке (из-за двух нулей получается не четыре определителя третьего порядка, а только два): 

Теорема 5.2 (теорема аннулирования). Сумма, произведений элементов одного из столбцов (строк) матрицы на соответствующие алгебраические дополнения элементов другого столбца (строки) равна нулю.

Матрицы. Определение. Действия над матрицами.

Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n:

расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n -порядок матрицы).

Линейные матричные операции По определению, чтобы умножить матрицу на число, нужно умножить на это число все элементы матрицы.  Суммой двух матриц одинаковой размерности, называется матрица той же размерности, каждый элемент которой равен сумме соответствующих элементов слагаемых.

Произведение матриц определяется следующим образом. Пусть заданы две матрицы A и B, причем число столбцов первой из них равно числу строк второй. Если

,  ,

то произведением матриц A и B, называется матрица

,

элементы которой вычисляются по формуле

c ij =a i1 b 1j + a i2 b 2j + ... +a in b nj , i=1, ..., m, j=1, ..., k.

Произведение матриц A и B обозначается AB, т.е. C=AB.

 

ПРИМЕР 1. Действия с матрицами.

 

Произведение матриц, вообще говоря, зависит от порядка сомножителей. Если AB=BA, то матрицы A и B называются перестановочными.

 

ПРИМЕР 2. Проверка перестановочности матриц.

 

Для квадратных матриц определена единичная матрица - квадратная матрица, все диагональные элементы которой единицы, а остальные - нули:

Единичная матрица чаще всего обозначается буквой E или E n, где n - порядок матрицы. Непосредственным вычислением легко проверить основное свойство единичной матрицы:

AE=EA=A.

Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы.

ПРИМЕР 3. Умножение матрицы на матрицы специального вида

Для квадратных матриц определена операция возведения в целую неотрицательную степень:

A 0 =E, A 1 =A, A 2 =AA, ..., A n =A n-1 A, ....

 

ПРИМЕР 4. Возведение матрицы в степень.

 

Для прямоугольных матриц определена операция транспонирования. Рассмотрим произвольную прямоугольную матрицу A. Матрица, получающаяся из матрицы A заменой строк столбцами, называется транспонированной по отношению к матрице и обозначается A T:

,  .

Верны соотношения: (AT )T =A; (A+B)T=AT +BT ; (AB)T =BT AT.

Квадратная матрица A, для которой A T =A, называется симметричной. Элементы такой матрицы, расположенные симметрично относительно главной диагонали, равны.

Квадратная матрица A называется обратимой, если существует такая матрица X, что AX=XA=E.  Матрица X называется обратной к матрице A и обозначается A -1, т.е.  A A -1 =A -1A=E.

Известно, что если матрица A невырождена (т.е ее определитель отличен от нуля), то у нее существует обратная матрица A -1.

Верно соотношение: (A-1)T =(AT ) -1.

 

Обратная матрица. Теорема существования обратной матрицы. Свойства обратных матриц.

Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

Рассмотрим квадратную матрицу

  .

Обозначим  =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если  = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А1, так что В = А1. Обратная матрица вычисляется по формуле

,                                               (4.5)

где А i j - алгебраические дополнения элементов a i j.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10. Для матрицы   найти обратную.

Решение. Находим сначала детерминант матрицы А      значит, обратная матрица существует и мы ее можем найти по формуле:   , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi jисходной матрицы.                    

                    

                   

                  

 откуда    .