Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лазер тел.docx
Скачиваний:
8
Добавлен:
02.09.2019
Размер:
1.6 Mб
Скачать

Идея лазерной электронно-лучевой трубки принадлежит советским ученым, сотрудникам ФИАН, Н.Г. Басову, О.В. Богданкевичу и А.С. Насибову. Первый советский лазерный дисплей – «Квантоскоп», разработанный в НИИ «Платан» в сотрудничестве с ФИАН, увидел свет в виде готового устройства еще в конце восьмидесятых годов.

Принцип устройства разрабатываемого лазерного телевизора основывается на логическом развитии электронно-лучевого источника света, в котором слой люминофора заменен на полупроводниковый активный слой в микрорезонаторе.

В нем использовались три лазерные электроннолучевые трубки, излучающие в красном, зеленом и синем диапазонах спектра. Это был активный дисплей, в котором изображение формировалось внутри источника света. В каждый момент времени лазерный пучок выходил из того места полупроводникового слоя, куда был направлен электронный пучок. Цветное изображение формировалось путем совмещения трех монохромных изображений на большом внешнем экране. Однако это было громоздкое устройство, которое требовало охлаждения полупроводникового слоя до низких температур (-120 oС). Необходимо было придумать что-то, что позволило бы достигнуть высокой мощности света при комнатной температуре.

Но вскоре весь мир пошел по другому пути – пути создания светоклапанного устройства наподобие жидкокристаллического затвора или матрицы микрозеркал. Оба этих устройства в настоящее время довольно хорошо работают, но хорошего источника монохроматического света для этих устройств до сих пор нет.

>«Сегодня в мощных проекционных устройствах в качестве источника света используются в основном дуговые ксеноновые лампы высокого давления. Но КПД ксеноновых ламп – примерно 1%, это получается из сопоставления той мощности, что идет на получение изображения и той, что потребляет лампа. Причина кроется в том, что для получения изображения высокого качества необходимо из сплошного спектра лампы "вырезать» относительно узкие линии трех основных цветов: красного, зеленого и синего свечения, а всю остальную мощность излучения лампы, которая превращается в тепло, надо отводить", – говорит руководитель работы, заведующий Лабораторией лазеров с катодно-лучевой накачкой, доктор физ.-мат.наук Владимир Козловский.

Направления по замене ксеноновых ламп уже наметились. Например, некоторые компании пошли по пути использования светодиодов. Однако, из-за их относительно низкой яркости (по сравнению с лазерными источниками) создание проекторов с потоком в несколько тысяч люмен потребует использования сложной и дорогой оптической системы. Другие – пытаются «обуздать» лазерные источники, например, еще в 2002 году компания Q-peak продемонстрировала лазерный RGB (Red-Green-Blue) источник на основе удвоения и параметрического преобразования частоты твердотельных лазеров с накачкой излучением лазерных диодов. Первый коммерческий лазерный телевизор компании Mitsubishi, появившийся на рынке в 2008, основывается на мощных лазерных диодах, излучающих в красной и синей области спектра. В качестве источника зеленого излучения там используется вторая гармоника твердотельного лазера с накачкой лазерными диодами. Однако эти системы также не без минусов, и главный из них – их высокая стоимость.

Разработка ФИАН направлена на создание лазеров на полупроводниковых наноструктурах с катодно-лучевой накачкой, состоящих из большого числа тонких слоев – квантовых ям, помещенных в пучности одной из мод оптического резонатора. Такая структура позволяет решить задачи работы при повышенной температуре, значительного снижения ускоряющего напряжения (до нескольких киловольт) и увеличения срока службы, и может быть использована в источниках RGB-излучения для малогабаритных LCD и DMD проекторов.

Но основное достоинство таких источников заключается в их низкой стоимости по сравнению с аналогами.

В настоящее время сотрудники ФИАНа совместно с сотрудниками Института радиотехники и электроники им. В.А. Котельникова РАН, Центра волоконной оптики РАН, Технологического центра Шеффилдского университета (Англия) и компании Principia LightWorks Inc. (США) достигли достаточно высоких характеристик по эффективности красного лазера (на наноструктуре GaInP/AlGaInP). Предложено несколько эффективных вариантов зеленого и синего лазеров (особые ожидания возлагаются на структуры ZnCdSSe/ZnSSe/GaAs (зеленый свет) и ZnSe/ZnMgSSe/GaAs (синий свет). В лабораторных условиях уже созданы лазерные электронно-лучевые трубки на наноструктурах с мощностью 9 Вт на 640 нм (красный свет), 3 Вт на 535 нм (зеленый свет) и 6 Вт на 458 нм (синий свет). Уровень разработки красной трубки близок к промышленному освоению отпаянных приборов (эффективность 10 %), осталось подстроить под этот уровень синюю и зеленую трубки – это предмет следующего, уже стартовавшего, этапа разработки.

Лазерные телевизоры в 1,8 раза превосходят классические телевизоры по широте цветового диапазона, увеличивая на тот же коэффициент качество изображения. Кроме того, в ЖК и плазме существует проблема передачи на экран оттенков чёрного, которой нет в лазерном телевизоре. Лазерные телевизоры поддерживают высокую частоту обновления экрана, благодаря чему они способны воспроизводить стереоизображение - работать в качестве 3D-дисплея. Срок службы лазерных дисплеев практически не ограничен, так как их пиксели не подвержены выгоранию и вообще какой-либо деградации. Толщина лазерных телевизоров не больше плазменных и жидкокристаллических, а потребление электроэнергии меньше, чем у ЖК и плазмы. Нельзя не заметить потрясающий угол обзора, с которым не может сравниться ни один проектор. Компания Mitsubishi гарантирует полную безопасность их лазерных телевизоров для органов зрения благодаря встроенным в них рассеивающим фильтрам.

Модель «MITSUBISHI  L 75 – A 94»

Одна из новейших лазерных технологий корпорации «Mitsubishi» произвела настоящий фурор среди телевизионных экранов с весьма большой диагональю. Новые Лазерные устройства «LaserVue» ®  -  это, безусловно, новый образец для больших телевизионных приёмников. Они снабжают чистую, как в реальном кинотеатре, передачу цветов, при этом потребляя в несколько раз меньше электрической энергии, чем подобные по параметрам плоско-панельные устройства. «LaserVue» ® использует всю свою мощь истинного источника света на Земле, исключительно для того, чтобы передать Вам в несколько раз больше цветов, чем какая-то другая технология телевизоров на сегодняшний день. Специализированные лучи лазера обеспечивают изображение широкого спектра ярких и весьма сложных оттенков цветов. Плюс к этому обеспечивают неописуемую глубину контраста на экране Лазерного телевизора.        

 

Модель «MITSUBISHI  L75 – A91»

Абсолютно новая лазерная технология корпорации  «Mitsubishi» произвела переворот среди телевизионных экранов с весьма большой диагональю экрана. Лазерные приёмники «LaserVue» ®  -  это совершенно новый образец для больших телевизионных приёмников. Они обеспечивают чистейшую, как в реальном кинотеатре, передачу цветов, при этом потребляя в несколько раз меньше электрической энергии, чем схожие по своим размерам плоско-панельные приёмники. Технологии «LaserVue» ® используют всю свою мощь истинного источника света на Земле, для того, чтобы передать в десятки раз больше цветов, чем какая-то другая технология телевизоров на сегодня. Специализированные лазерные лучи снабжают изображение широкого спектра ярких и весьма сложных оттенков цвета. Плюс ко всему обеспечивают непередаваемую глубину контрастов на экране Лазерного ТВ. 

Лазерный телевизор – прорыв на рынке больших экранов?.

Перед тем как приступить непосредственно к разговору о лазерной технологии, хотелось бы взглянуть на современную ситуацию на рынке телевизоров. Для этого воспользуемся аналитическим исследованием компании DisplaySearch по результатам в отрасли за второй квартал текущего года.

Технология

Объем продаж, тыс. шт.

Доля на рынке, %

Кварт.рост, %

Год. рост, %

LCD TV

23668

49,8

12

47

PDP TV

3391

7,1

22

52

OLED TV

1

0,0

-35

НД

CRT TV

20388

42,9

-8

-16

RPTV

96

0,2

-28

-85

Итого

47545

100

3

11

Итак, что же мы видим? Несмотря на прогнозы многолетней давности по экспансии на рынок SED, OLED, FED, и других перспективных технологий, сегодня ситуация такова. Безоговорочное лидерство принадлежит плоскопанельным жидкокристаллическим дисплеям, более того, их популярность с каждым годом растет высокими темпами. Интересно отметить, что старые добрые ЭЛТ-телевизоры, которым еще несколько лет назад предрекали скорую и быструю смерть, только в конце прошлого года уступили первое место ЖК и до сих пор удерживают довольно сильные позиции - более 40%.

RPTV (rear-projection TV, телевизоры с обратной проекцией), на которые возлагали большие надежды в связи с появлением новых инновационных разработок в этой области, по-прежнему плетутся в хвосте. Их доля на рынке во втором квартале составила всего 0,2%, а годовой прирост отрицателен (-85%). По мнению аналитического агентства IDC, проекционные ТВ потерпели неудачу по причине слишком больших габаритов, малых углов обзора, очень дорогих и короткоживущих источников света. Вообще, прошлый год оказался для "проекционников" очень печальным. Об уходе из этого сектора заявили такие влиятельные производители, как Hitachi, Epson, Sony, а аналитики все чаще говорили о закате эры проекционных ТВ.

К чему мы подводим? Дело в том, что лазерные телевизоры, по сути, тоже относятся к "проекционникам" (что вы увидите дальше), только в них вместо лампы источником света выступает лазер. Так вот, напрашивается вопрос, сможет ли лазерная технология сдвинуть рынок проекционных телевизионных систем с мертвой точки и вообще, есть ли у нее шансы составить серьезную конкуренцию "плазме", которая становится все доступнее потребителям?

На пути к лазерной эре

Идея использования лазеров в качестве источника света в проекционных системах зародилась еще в 60-х годах прошлого века. Так, в январе далекого 1966 года известная компания Texas Instruments опубликовала доклад с красноречивым названием "Experimental Laser Display for Large Screen Presentation", в котором рассказывалось о возможности замены традиционных ламп лазерами и о преимуществах такого решения. А в 1969 TI уже успела оформить патент, связанный с применением лазеров в проекторах.

Казалось, в мире проекционных систем грядет настоящая революция. Действительно, лазеры имеют во много раз более высокую яркость по сравнению с обычными UHP-лампами и светодиодами. Применение лазеров обещает более широкий охват цветового пространства, воспринимаемого человеческим зрением, снижение энергопотребления телевизоров, уменьшение габаритов и веса по сравнению с традиционными "проекционниками".

Но на практике все оказалось не так просто. Распространению лазерных проекционных систем препятствовали некоторые специфические технические трудности. Например, разработчики непременно сталкивались с проблемой появления зернистости (так называемым спекл-фоном), являющейся следствием когерентной интерференции, сложности были с модуляцией лазерного пучка. Но самым главным сдерживающим фактором в разработке лазерных ТВ оказалось то, что производство самих лазеров видимого диапазона достаточной мощности и малых габаритов оказалось слишком дорогим и сложным. Поэтому до последнего времени появление лазерных ТВ все откладывалось, а лазерные проекторы сегодня мало распространены по причине заоблачных цен.

Новые надежды появились, когда на выставке Consumer Electronics Show 2006 в Лас-Вегасе была представлена полупроводниковая лазерная платформа Necsel и построенные на ее основе твердотельные источники света для использования в проекционных системах. Отметим, Necsel разрабатывалась с 1998 года компанией Novalux, которая в январе этого года была поглощена крупным австралийским производителем оптических и беспроводных решений Arasor, занимающимся разработкой оптоэлектронного чипа для лазерных ТВ.

Лазер на базе платформы Necsel с 15-ю излучающими диодами и габаритами 1х5 мм.

На CES 2006 Arasor совместно с Novalux продемонстрировала два прототипа лазерных телевизоров с обратной проекцией, а также прототип лазерного пико-проектора. Все эти разработки, ставшие одними из наиболее интересных и захватывающих экспонатов на выставке, были спроектированы на базе платформы Necsel и микросхемы Arasor. Разработчики отметили, что их изобретение дает зеленый свет лазерным проекционным системам, так как является относительно дешевым решением, обладает миниатюрными габаритами, малым энергопотреблением и достаточно высокой светоотдачей.

Сравнение лазерного (слева) и плазменного (справа) телевизоров.

Конечно, Necsel не могла остаться без внимания отраслевых гигантов. Уже 15 февраля 2006 года на конференции в Амагасаки (крупный промышленный город и порт Японии) президент Mitsubishi Electric Тамоцу Номакучи (Tamotsu Nomakuchi) заявил, что его компании удалось разработать прототип проекционного телевизора, использующего в качестве источника света лазеры Novalux. Примерно через месяц, в марте того же года о сотрудничестве с Novalux заговорила компания Seiko Epson Corporation. Кроме того, из уст вице-президента по маркетингу компании Novalux Грега Нивена (Greg Niven) прозвучало заявление о планах Samsung Electronics также вступить в "лазерную" гонку.

На CES 2007 прототип лазерного ТВ продемонстрировала также компания Sony. Ее проекционный дисплей был спроектирован на основе технологии SXRD (собственная реализация LCOS). Модель имела диагональ экрана 55 дюймов, толщину всего 27,3 см и отличалась разрешением Full HD 1080p (1920х1080 пикселей).

Лазерный телевизор Sony. Вид сбоку.

Самой активной и напористой в продвижении лазерных телевизоров оказалась компания Mitsubishi. В январе 2008 года на выставке Consumer Electronics Show она представила "первый в мире коммерческий лазерный телевизор" - 65-дюймовый Mitsubishi LaserVue TV. Это событие активно обсуждали на форумах и в профессиональных кругах, но постепенно ажиотаж спал, ведь реального устройства в продаже все не было, а Mitsubishi лишь время от времени демонстрировала свое творение на разнообразных выставках.

Прототип 65-дюймового лазерного телевизора от Mitsubishi.

Но в начале октября свершилось долгожданное событие - Mitsubishi начала продажи первых серийных экземпляров LaserVue. Официального пресс-релиза о запуске в розничные каналы лазерного ТВ на сайте Mitsubishi нет, но подтверждение этой информации нам удалось получить от PR-менеджера Mitsubishi Electric Марка Скотта (Mark Scott) и сотрудника пресс-службы компании Трейси Реннера (Traci Renner).

Несмотря на то, что Sony и Epson решили оставить разработку лазерных телевизоров, Arasor/Novalux и Mitsubishi, похоже, без конкурентов не останутся. В августе этого года компания QPC Lasers заявила о начале поставок лазеров ODM-производителю Asia Optical Co. Inc. (AOCI), который также планирует заняться выпуском лазерных ТВ. Кроме того, компания AOCI уже продемонстрировала прототип 60-дюймового лазерного RPTV. Но существенное преимущество Mitsubishi в том, что ее продукт уже готов к завоеванию рынка, а вот дата релиза первого лазерного ТВ от AOCI пока еще под большим вопросом.