Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лазер тел.docx
Скачиваний:
8
Добавлен:
02.09.2019
Размер:
1.6 Mб
Скачать

Как это работает?

Как мы уже отмечали выше, лазерный телевизор фактически является обратной проекционной системой. Поэтому, если вы когда-нибудь интересовались устройством проекционного телевизора, большая часть информации этой главы может показаться вам очень знакомой.

В проекционном телевизоре RPTV изображение выводится на просветном экране. Принципиальные отличия фронтальной и обратной проекции можно видеть на упрощенных схематических рисунках ниже.

Как видите, неотъемлемой частью проекционного телевизора является встроенный проектор. А сами проекторы сегодня выпускаются по следующим основным технологиям: на базе электронно-лучевых трубок, на базе жидкокристаллических матриц, на базе механических микрозеркал DMD (DLP Technology), на базе ЖК на кремниевой подложке (LCOS). Соответственно, в литературе и статьях встречаются такие названия проекционных телевизоров в зависимости от используемой технологии: CRT RPTV, LCD RPTV, DLP RPTV и LCOS RPTV.

Реализация лазерных ТВ в зависимости от используемой технологии также может быть разной. Например, уже упоминаемый выше прототип компании Sony был спроектирован на базе SXRD (LCOS), а Mitsubishi применила в своем лазерном телевизоре DLP-технологию. Демонстрируемые компаниями Novalux и Arasor прототипы лазерных телевизоров использовали как LCD-технологию, так и DLP.

Итак, какие преимущества дает использование лазеров вместо ламп в проекционных системах? Рассмотрим на примере DLP-технологии. В традиционной одночиповой DLP-системе свет от UHP-лампы проходит сквозь вращающийся диск с цветными светофильтрами, далее он должен пройти через световой тоннель для гомогенизации светового потока (гомогенный - однородный, равномерный) и только после этого попадает на матрицу микрозеркал.

Лазер же позволяет существенно упростить эту схему, позволяя обойтись без цветового колеса, светового тоннеля, фильтров ультрафиолетового и инфракрасного излучения, а также дополнительной оптики. Источник света Necsel представляет собой комбинацию красного, зеленого и синего лазеров, которые проецируют мощные световые пучки непосредственно на микрозеркала.

Аналогичная ситуация с 3LCD-технологией. Напомним, 3LCD-система включает блок дихроических зеркал, которые гомогенизируют и разделяют белый световой поток от UHP-лампы на три составляющие (красный, зеленый и синий цвета), которые потом попадают на три HTPS-панели.

Лазерные пучки можно непосредственно проецировать на панели, что исключает необходимость в поляризаторах, цветовых фильтрах, вращающихся зеркалах, фильтрах ультрафиолетового и инфракрасного излучения, фасеточных объективах, а также некоторых полевых линзах.

Таким образом, убивается сразу несколько зайцев. Уменьшается стоимость системы за счет исключения ряда компонент, существенно уменьшаются масса и габариты конечных продуктов, а также потребляемая мощность. Кроме того, по словам разработчиков, лазеры позволяют получить более яркую картинку с гораздо большим цветовым охватом.

Теперь копнем немного глубже, а именно - рассмотрим структуру самой лазерной платформы Necsel. Состоит она из трех основных частей: микросхемы Necsel (Necsel chip), удвоителя частоты (Frequency doubler), а также специальной зеркальной пластинки (Output coupler, выходное зеркало лазера).

Микросхема является индий-галлий-арсенидным (InGaAs) полупроводниковым прибором, который представляет собой массив лазерных вертикально-излучающих диодов инфракрасного диапазона. Удвоитель частоты основан на нелинейном PPLN-кристалле (periodically poled lithium niobate) и позволяет конвертировать инфракрасное излучение в свет видимого диапазона. Кристалл удваивает частоту ИР-излучения, соответственно уменьшая длину волны вдвое. Плоское зеркало проецирует мощный выходной поток видимого излучения прямо на микрозеркала (в DLP-технологии) или ЖК-матрицу.

Лазеры Necsel производятся на ее собственной фабрике в Кремниевой долине в виде 4-дюймовых полупроводниковых пластин. Одна такая пластина включает тысячи микросхем. Как отмечается, компания способна производить несколько миллионов лазерных чипов в год. Мощность видимого света и длина излучаемой волны лазеров Necsel могут иметь стабильные значения на протяжении более 20 тыс. часов при максимальной нагрузке. Их КПД превышает 15%, а световой поток составляет более 1000 люмен.

Было бы несправедливо обойти вниманием также достижения компании QPC Lasers, но, к сожалению, подробной информации о ее лазерах видимого диапазона в открытых источниках практически нет. Известно, что они основаны на собственной технологии BrightLase. Также отмечаются такие общие характеристики, как малая себестоимость, малое энергопотребление, сверхкомпактный дизайн, высокая светоотдача - в общем, никакой конкретики.