Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
925eed40-e704-4801-9f01-679cf7527848.doc
Скачиваний:
15
Добавлен:
04.09.2019
Размер:
2.15 Mб
Скачать

1.17 Понятие мультипроцессорной вс. Классификация параллельных вс. Методы построения мп-систем.

Вычислительные комплексы, содержащие несколько ЦП, – мультипроцессорные вычислительные системы.

ЦП – центр.проц.;ПУ–периф.у-во,ОП-память.

Классификация параллельных ВС.

Параллельные вычислительные системы — это физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.

Два основных вида классификации: по Флинну и по типу строения оперативной памяти.

  1. Классификация по Флинну

Классификации Флинна охватывает только два классификационных признака – тип потока команд и тип потока данных.

В одиночном потоке команд в один момент времени может выполняться только одна команда. В этом случае эта единственная команда определяет в данный момент времени работу всех или, по крайней мере, многих устройств вычислительной системы.

Во множественном потоке команд в один момент времени может выполняться много команд. В этом случае каждая из таких команд определяет в данный момент времени работу только одного или лишь нескольких (но не всех) устройств вычислительной системы.

Одиночный поток данных обязательно предполагает наличие в вычислительной системе только одного устройства оперативной памяти и одного процессора. Однако при этом процессор может быть как угодно сложным, так что процесс обработки каждой единицы информации в потоке может требовать выполнения многих команд.

Множественный поток данных состоит из многих зависимых или независимых одиночных потоков данных.

В соответствии с классификацией Флина различают следующие четыре класса вычислительных система: SISD (ОКОД); MISD (МКОД); SIMD (ОКМД); MIMD (МКМД).

SISD-система представляет собой классическую однопроцессорную ЭВМ фон неймановской архитектуры.

На MISD-систему существуют различные точки зрения. По одно них – за всю историю развития вычислительной техники MISD-системы не были созданы. По другой точке зрения (менее распространенной, чем первая) к MISD-системам относятся векторно-конвейерные вычислительные системы.

SIMD-система содержит много процессоров, которые синхронно (как правило) выполняют одну и ту же команду над разными данными. SIMD-системы делятся на два больших класса: векторно-конвейерные вычислительные системы; векторно-параллельные вычислительные системы.

MIMD-система содержит много процессоров, которые (как правило, асинхронно) выполняют разные команды над разными данными. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD (по крайней мере, на верхнем уровне иерархии). MIMD-системы часто называют многопроцессорными системами.

  1. Классификация по типу строения оперативной памяти

1) В вычислительных системах с общей памятью (Common Memory Systems или Shared Memory Systems) значение, записанное в память одним из процессоров, напрямую доступно для другого процессора. К общей памяти доступ разных процессорами системы осуществляется, как правило, за одинаковое время. Поэтому такая память называется еще UMA–память (Unified Memory Access) — памятью с одинаковым временем доступа. Системы с такой памятью называются UMA-системами. Системы с распределенной памятью называются также слабосвязанными системами. Вычислительные системы с распределенной памятью называются мультикомпьютерными вычислительными системами или мультикомпьютерами.

2) В системах с распределенной памятью (Distributed Memory Systems) каждый процессор имеет свою локальную память с локальным адресным пространством (большое число быстрых каналов, которые связывают отдельные части этой памяти с отдельными процессорами). Обмен информацией между частями распределенной памяти осуществляется обычно относительно медленно. Системы с распределенной памятью называются также слабосвязанными системами. Вычислительные системы с распределенной памятью называются мультикомпьютерными вычислительными системами или мультикомпьютерами.

3) Системы с гибридной памятью - NUMA-системы (Non-Uniform Memory Access Systems) имеют память, которая физически распределена по различным частям системы, но логически разделяема (образует единое адресное пространство). Такая память называется еще логически общей (разделяемой) памятью (logically shared memory). В отличие от UMA-систем, в NUMA-системах время доступа к различным частям оперативной памяти различно.

Методы построения МП-систем. 1) В мультипроцессорных системах с подчиненными процессорами один ЦП является главным, остальные - подчиненными (ведущий - ведомые). Операционная система выполняется только на главном процессоре. Этот ЦП осуществляет ввод/вывод и управляет загрузкой подчиненных процессоров. Подчиненные процессоры выполняют только программы пользователя. Узкое место - главный процессор. Он должен иметь большую мощность (производительность), чем подчиненные процессоры, чтобы последние не простаивали. 2) В мультипроцессорной системе с равноправными процессорами каждый ЦП имеет собственную ОС и управляет собственными ресурсами и устройствами ввода/вывода по типу многомашинных комплексов. В такой организации для управления всей системы существуют таблицы с глобальной системной информацией, доступ к которой строго контролируется методом взаимного исключения. Каждый ЦП берет из общей операции задание и выполняет его до завершения. Во время исполнения взаимодействие между ЦП не предусматривается. Данную систему характеризует высокая надежность, но не достаточно высокий уровень распараллеливания. 3) Симметричная организация наиболее сложна и эффективна. Здесь все ЦП - идентичны. Каждый из них может управлять работой любого периферийного устройства и обращаться к любому устройству памяти. В общей области памяти существует две очереди: очередь готовых процессов и очередь готовых процессоров. В любой момент времени любой готовый процесс может выполняться на любом готовом процессоре. Процессы во время своего исполнения мигрируют между ЦП. ОС также перемещается по процессорам, но в каждый момент времени может находиться только на одном процессоре. Достоинства: высокая надежность (отказ одного из ЦП исключает его из очереди готовых процессоров); сбалансированная загрузка ЦП; лучшее использование ресурсов. Недостатки - возрастает число конфликтов по системному обслуживанию, так как ОС имеется только в одном экземпляре.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]