Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vse_lektsii_po_eltekhu.doc
Скачиваний:
14
Добавлен:
10.09.2019
Размер:
5.45 Mб
Скачать

Лекция №13.

Обмотка статора может быть соединена звездой или треугольником. Схема соединения зависит от расчётного напряжения двигателя и номинального напряжения в сети.

Допустим линейное напряжение , а двигатель рассчитан для включения в сеть с напряжением , тогда обмотку статора следует соединять звездой, так как в этом случае , то есть , а .

Если же , то обмотку статора следует соединить треугольником. В этом случае .

Для осуществления таких соединений на корпусе двигателя имеется клеммная коробка, куда выведены начала и концы фаз.

Формула для нахождения частоты вращающегося поля.

Пусть на статоре всего три катушки.

Р ассмотрим момент , при котором , в этом случае ток положителен, а токи и отрицательны. Если ток положителен, его направление примем от начала обмотки к её концу.

Для определения направления поля применяется правило правоходового винта.

Вектор магнитного поля направлен от северного полюса к южному полюсу . Если на статоре три катушки, то образуется одна пара полюсов, то есть .

Через время, равное периоду ось поля займёт первоначальное положение, следовательно, за период поле делает один полный оборот. Так как , следовательно, .

Частота - число полных колебаний или оборотов в секунду.

Чаще частоту вращения поля выражают в оборотах в минуту: .

Если число катушек в каждой фазе увеличить, а сдвиг фаз между токами оставить равным , то частота вращения поля измениться: .

Зависимость частоты вращения поля от числа катушек:

Число катушек в статоре

3

6

9

12

15

Число пар полюсов

1

2

3

4

5

Угол в пространстве между катушками

120°

60°

40°

30°

24°

Частота вращения поля

3000

1500

1000

750

600

ЭДС статора и неподвижного ротора. Режим холостого хода.

Обмотка ротора разомкнута. Ток в ней равен нулю. Вращающий момент также равен нулю, то есть ротор остаётся неподвижным. Частота индуцированной ЭДС в обмотке ротора равна частоте питающей сети. При этом магнитный поток, пронизывающий каждый виток в обмотке статора и ротора, меняется по синусоидальному закону: . Действующее значение ЭДС, которая индуцируется в каждом витке, по аналогии с трансформатором можно найти по формуле . ЭДС, которая индуцируется в обмотке статора, можно приблизительно найти по формуле: , а ЭДС, которая индуцируется в обмотке неподвижного ротора, приблизительно определяется по следующей формуле: .

Коэффициент трансформации: .

Ток в обмотке ротора также будет равен нулю, если обмотка замкнута, а скорость вращения ротора достигнет . Такой режим называется режимом идеального холостого хода. При этом в обмотке статора также протекает ток , который достигает 20-40 процентов от номинального тока.

ЭДС вращающегося ротора.

Если обмотку фазного ротора замкнуть накоротко или на какое-либо сопротивление, то по ней потечёт ток , что приведёт к возникновению силы, действующей на проводник с током, то есть ротор будет разгоняться и при полной или номинальной нагрузке величина скольжения станет равной 2-8 процентам.

Определим частоту тока в обмотках вращающегося ротора:

; ; .

Таким образом, во вращающемся поле .

Если частота сети , а величина скольжения лежит в пределах , то при номинальной нагрузке .

ЭДС, которая возникает в подвижном роторе можно определить по следующей формуле: , где - ЭДС, возникающая в неподвижном роторе. Таким образом, ЭДС во вращающемся роторе значительно меньше ЭДС в неподвижном роторе.

Токи ротора, помимо участия в создании общего магнитного потока, образуют также токи рассеивания. Следовательно, возникает ЭДС рассеивания. Действие этой ЭДС учитывается следующим образом: . Можно записать выражение для тока во вращающемся роторе: , где - активное сопротивление обмотки ротора.

В момент пуска двигателя величина скольжения равна 1, а ток достигает своего максимального значения, и становится равен пусковому току . Обмотка ротора электрически не связана с внешней цепью. Ток в ней появляется за счёт наведённых ЭДС, поэтому уравнение напряжений для цепи вращающегося ротора будет иметь следующий вид: .

Уравнение напряжение обмотки статора совпадает с уравнением напряжения для обмотки трансформатора: . Уравнение токов обмотки статора также аналогично уравнению токов обмотки трансформатора: .

Действительную цепь вращающегося ротора заменяют энергетически эквивалентной цепью заторможенного (неподвижного) ротора с частотой . При этом ток и мощность, потребляемые двигателем из сети, а также электромагнитная мощность, передаваемая ротору, остаются неизменными, поэтому можно изобразить схему замещения эквивалентного неподвижного ротора.

.

Активное сопротивление:

.

Механическая нагрузка асинхронного двигателя при анализе условно заменяется эквивалентной электрической нагрузкой, включённой в сеть ротора. Если сделать привидение параметров обмотки ротора к числу витков статора, то получается полная схема замещения одной фазы трёхфазного асинхронного двигателя.

В электрическом отношении асинхронный двигатель подобен трансформатору, работающему на чисто активную нагрузку.

Электрические потери – потери в обмотках.

Электрические потери в обмотках статора можно определить по следующей формуле: .

Электрические потери в обмотке ротора определяются по формуле: .

Тепловые потери в сопротивлении равны магнитным потерям в стальном магнитопроводе статора, то есть .

Тепловые потери в сопротивлении числено равны электрической энергии фактически преобразованной в механическую работу, то есть: .

От статора к ротору передаётся электромагнитная мощность, которую можно определить по формуле: .

Возьмём отношение: , следовательно, .

Потери в цепи ротора прямо пропорциональны скольжению, поэтому двигатели с большими номинальными скольжениями имеют большие потери, а следовательно низкий КПД.

Электромагнитный вращающий момент.

Механическую работу можно найти по формуле: . Кроме того, эту работу можно найти следующим образом: , где . Если приравнять да этих выражения, получим следующее выражение для момента: . Если это выразить через напряжение с учётом упрощённой схемы замещения и выразить ток через напряжение на фазе, то можно получить следующее выражение для момента: . При заданном значении напряжения на фазе, вращающий момент двигателя зависит только от скольжения или от скорости вращения ротора , так как .

Механические характеристики.

Задаваясь различными значениями величины скольжения в пределах от 0 до 1, пользуясь полученной формулой можно построить зависимость .

- максимальный (критический) момент.

, - номинальные момент и скольжение, когда двигатель работает при полной нагрузке.

- момент при пуске.

С помощью этого графика, учитывая соотношение , строят зависимость .

Эти зависимости и называют механическими характеристиками двигателя.

Вращающий момент и скольжение соответствующие работе двигателя при полной нагрузке называются номинальными моментом и скольжением.

Естественные механические характеристики – механические характеристики, построенные для случая, когда напряжение на зажимах двигателя равно номинальному, и в цепях двигателя отсутствуют какие-либо добавочные сопротивления.

Реостатные механические характеристики – механические характеристики, полученные при включении реостата в цепь фазного ротора.

Лекция №14.

Устойчивая работа двигателя.

Устойчивая часть характеристики – участок характеристики от до .

Неустойчивая часть характеристики – участок характеристики от до .

При работе на устойчивой части характеристики момент развиваемый двигателем автоматически следует за изменением момента нагрузки. При работе на неустойчивой части характеристики этого не происходит.

М омент уравновешивает момент сопротивления . Допустим, момент сопротивления увеличился, и стал равен , что приведёт к уменьшению скорости вращения ротора, вследствие чего возрастёт величина скольжения, и момент станет равным моменту , который уравновешивает момент сопротивления .

Если момент сопротивления уменьшился, и стал равен , то скорость вращения ротора возрастёт, а величина скольжения уменьшится, и станет равной , вследствие чего уменьшится и момент вращения ротора до величины , при этом он будет уравновешивать момент сопротивления, то есть .

Даже незначительное возрастание момента сопротивления в неустойчивой части работы двигателя приведёт к уменьшению скорости вращения ротора , вследствие чего увеличится скольжение, а момент вращения ротора уменьшится. Это будет продолжаться до тех пор, пока величина скольжения не станет равной 1, и двигатель не остановится. Остановка двигателя способствует увеличению тока в обмотках. Для того, чтобы случайные перегрузки не вызвали перехода от устойчивого режима к неустойчивому, двигатель должен обладать перегрузочной способностью. Перегрузочная способность характеризуется коэффициентом , обычно .

Построение естественных механических характеристик.

В каталогах и технических справочниках не даются моменты, а даются соотношения и .

Номинальный вращающий момент можно определить следующей по формуле: . Все остальные текущие значения рассчитывают по формуле Клосса: , где , в которой ; - скорость вращения ротора в номинальном режиме; выбирается из ряда 3000, 1500, 1000, 750 и так далее, как ближайшее большее к скорости вращения ротора в номинальном режиме число.

Построение реостатных характеристик.

При включении сопротивления в цепь каждой фазы ротора снижается пусковой ток , и изменяется начальный пусковой момент , а также критическое скольжение , при этом максимальный критический момент остаётся неизменным.

1 – характеристика, при которой реостатное сопротивление равно нулю, то есть .

2 – характеристика, при которой .

3 – характеристика, при которой , причём .

Первая характеристика является естественной характеристикой двигателя. Вторая и третья характеристики являются реостатными характеристиками двигателя.

При неизменном моменте выполняется равенство , или .

Влияние изменения напряжения сети.

1 – характеристика, при которой напряжение равно номинальному, то есть .

2 – характеристика, при которой напряжение меньше номинального, то есть .

3 – характеристика, при которой напряжение больше номинального, то есть .

Вращающий момент прямо пропорционален квадрату напряжения, то есть .

Критическая величина скольжения не зависит от напряжения , а критический и пусковой моменты меняются при изменении напряжения. Однако, если момент вращения постоянен, то есть , то величина скольжения меняется в зависимости от напряжения .

При снижении напряжения величина скольжения увеличивается, что приводит к уменьшению скорости вращения ротора, так как потери в цепи ротора тоже растут, при этом пусковой момент также снижается.

Когда напряжение становится больше номинального, то увеличивается потребляемая реактивная мощность, поэтому отклонение напряжения от номинального не должно превышать пяти процентов.

Так как момент прямо пропорционален квадрату напряжения, то очевидно следующее равенство: , то есть, если напряжение упало на 10 процентов ( ), то момент , то есть момент уменьшится на 19 процентов.

Регулировка скорости вращения асинхронного двигателя.

Для регулировки скорости вращения асинхронного двигателя применяются следующие способы:

  1. В ключение реостата в цепь фазного тока. Увеличение сопротивления реостата приводит к уменьшению скорости вращения ротора двигателя .

  2. Изменение числа пар полюсов. Так как величину можно найти по формуле , то меняя число пар полюсов будет меняться величина , что приведёт к изменении скорости вращения ротора двигателя.

  3. Изменение частоты . Это способ позволяет плавно регулировать частоту и скорость, однако требует применения преобразователя частоты.

Получение двух различных скоростей вращения поля достигается размещением на статоре двух независимых обмоток, каждая из которых обеспечивает свою скорость вращения, или специальным выполнением обмотки, которая позволяет путём переключения изменить скорость вращения поля в два раза. На практике существует двухскоростной двигатель, имеющий обмотку, позволяющую переключение между двумя скоростями ; трёхскоростной двигатель, имеющий две обмотки, одна из которых выполнена с переключением на две скорости; четырёхскоростной двигатель, имеющий две независимые обмотки, обе из которых позволяют переключаться между двумя скоростями.

Реверсирование асинхронного двигателя.

Реверсирование – изменение направления вращения двигателя.

Ранее говорилось о том, что поле вращается в сторону катушки с отстающим по фазе током. С помощью переключателя можно менять порядок следования фаз на зажимах двигателя и провести следующую замену фаз: . Поле сразу же меняет своё направление на обратное, а это приводит к изменению направления вращения ротора.

Пуск асинхронного двигателя.

Пуск асинхронного двигателя сопровождается появлением в его цепи тока значительной величины. При пуске ток может увеличиваться в 4-8 раз, по сравнению с номинальным.

Пуск двигателя с короткозамкнутым ротором осуществляется непосредственным включением обмотки статора на полное напряжение питающей цепи.

Иногда для борьбы с увеличением пускового тока применяются специальные меры:

  1. При пуске обмотка статора включена звездой. Рубильником подают напряжение из цепи трёхфазного тока. После достижения двигателем скорости, близкой к номинальной, обмотку статора переключают на треугольник. В этом случае пусковой ток и пусковой момент снижаются в три раза.

  2. Применяется схема с автотрансформаторным пуском. Во время пуска, к двигателю через автотрансформатор подводят пониженное напряжение. При достижении двигателем достаточной скорости, статор включается на полное напряжение. Если удаётся снизить пусковой ток в раз, то и пусковой момент также снижается в раз.

  3. В цепь статора включаются активные и индуктивные сопротивления, при этом, если пусковой ток снижается в раз, то пусковой момент снижается в раз.

  4. Используются двигатели с улучшенными пусковыми характеристиками:

    1. Двигатель с двойной короткозамкнутой обмоткой, у которого две обмотки располагаются концентрически: одна поверх другой. Верхняя обмотка выполняется из стержней с повышенным активным сопротивлением, а нижняя – с малым активным сопротивлением. При нормальной работе двигателя ток протекает главным образом по внутренней обмотке, которая называется рабочей. При пуске ток протекает по внешней обмотке, которая называется пусковой.

    2. Существуют двигатели с глубоким пазом. Улучшенные пусковые характеристики получаются вследствие более эффективного распределения тока вдоль стрежня, находящегося в пазу при пуске и нормальной работе.

П уск двигателя с фазным ротором. В цепь фазного ротора на время пуска включают добавочные сопротивления (пусковой реостат), что приводит к уменьшению пускового тока и пускового момента.

Пуск двигателя осуществляется в точке 1. В процессе пуска сопротивление реостата постепенно уменьшается. При достижении двигателем рабочей скорости вращения реостатное сопротивление полностью выключено, а обмотка ротора замкнута накоротко. Момент вращения ротора двигателя поддерживается на определённом уровне в процессе пуска. Точка 2 соответствует установившемуся режиму работы двигателя на естественной характеристике с моментом вращения ротора двигателя равным моменту сопротивления .

Тормозные режимы.

На практике находят применение механические и электрические режимы торможения. При электрическом торможении используется способность двигателей развивать тормозные моменты.

Динамическое торможение – торможение, при котором обмотка статора отключена от сети, и подключена к источнику постоянного тока. Неподвижное магнитное поле, созданное постоянным током, индуцирует ЭДС, которое вызывает ток в обмотке ротора, который продолжает вращаться по инерции. Взаимодействие индуцированного тока ротора с магнитным полем создаёт электромагнитный тормозящий момент. Кинетическая энергия, запасённая в движущихся частях агрегата и ротора, расходуется на преодоление тормозящего момента и преобразуется в тепло в обмотках ротора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]