Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekamen_matematika2003.doc
Скачиваний:
24
Добавлен:
17.09.2019
Размер:
1.33 Mб
Скачать

61. Інтегрування правильних дробів. Інтегрування раціональних дробів.

Теорема: Нехай заданий

f(x) – неперервна ф-ція на відрізку [a;b] та x=(t) – неперервна ф-ція на відрізку [;]. Якщо при цьому:

1) При зміні t від до x змінюється від а до b, тобто ()=a і (=b

2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:

.

2.

Означення: Відношення двох многочленів називається раціональним дробом.

Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n<m. Якщо ж nm, то дріб неправильний.

Найпростіші раціональні дроби (4 типи):

1. 2. 3. 4. де k2, kN, D=p2-4q<0

Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила:

1) Якщо Qm(x)=(x-a)kgm-k(x), то:

2) Якщо Qm(x)=(x2+px+q)kgm-2k(x), то:

де Аі, Ві, – деякі коефіцієнти, та правильні раціональні дроби.

Методика інтегрування раціональних ф-ій:

1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена

і правильного раціонального дробу.

2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів.

3. Інтегрують цілу частину і найпростіші дроби.

62. Інтегрування тригонометричних функцій

Розглянемо R(sin x,cos x)dx, де R – раціональна ф-ія відносно sin, cos, тобто над sin, cos викон. лише арифметичні дії та піднесення до цілого степеня. Існують такі підстановки, що за їх допомогою інтеграл R(sinx,cosx)dx завжди може бути зведений до інтеграла від раціональної ф-ії R*(t)dt, загальна схема інтегрування якої розроблена.

1) Універсальна тригонометрична підстановка . На практиці універсальну тригонометричну підстановку використовують, якщо sin x, cos x входять в невисокому степені, інакше підрахунки будуть складні.

2) Підінтегральна ф-ія – непарна відносно sin x, тоді роблять підстановку cos x = t.

3) Підінтегральна ф-ія – непарна відносно cos x раціоналізується за допомогою підстановки sin x = t.

4) Підінтегральна ф-ія R(sin x, cos x) – парна по sinx, cosx сукупно, тобто R(-sinx,-cosx)=R(sinx,cosx). В цьому випадку використовують підстановку tgx=t або ctgx=t.

5) Підінтегральна ф-ія R(tgx) раціоналізується підстановкою tgx=t.

В інтегралах sin2nxcos2mxdx рекомендується скористатися формулами зниження степеня.

63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.

Розглянемо на простому конкретному прикладі задачу обчислення площі фігури, обмеженої неперервною кривою , заданої на інтервалі , двома ординатами в точках і , та віссю , (рис.1) , за тією схемою , про яку йшлося в п.8.3.1 за обчислення моменту інерції тіла , де досить чітко просліджувалися три етапи . Розглядувану фігуру далі називатимемо криволінійною трапецією .

Етап 1. Розбиття фігури (рис. 9.1) на ряд вузьких смужок, паралельних осі . Площу кожної із смужок можна обчислювати наближено, замінюючи її або прямокутником, верхня основа якого проходить через точку на кривій і знаходиться не вище за криву, або трапецією , обмеженою зверху хордою , що сполучає кінці відрізку кривої .

Етап 2. Сума площ усіх прямокутників або трапецоїдних смужок дасть наближене значення площ криволінійної трапеції. Очевидно, що ця площа буде обчислена тим точніше, чим меншою буде ширина кожної смужки .

Етап 3. Для точного обчислення площі криволінійної трапеції слід обчислити границю вказаної суми, коли ширина кожної смужки прямує до нуля . Точне значення площі криволінійної трапеції позначають символом , який називається визначеним інтегралом у проміжку від до функції і вперше введений Й.Бернуллі . Функція називається підінтегральною , а вираз підінтегральним. Знак нагадує розтягнуту літеру S , першу літеру латинського слова "summa" .Числа і - границі інтегрування (нижня і верхня відповідно ), - підінтегральна змінна . Аналогічно можна підійти і до способу обчислення довжини дуги (див. Рис.9.1) . З'єднуючи точки поділу кривої на частинки хордами , можна вважати, що сума довжин усіх хорд наближено дорівнюватиме довжині дуги . Якщо позначити ширину кожної смужки через , а різницю основ трапеції через , то довжини хорд дорівнюватимуть . Тоді сума довжин усіх хорд виразиться таким чином : і наближено дорівнюватиме довжині дуги Для обчислення точного значення довжини дуги слід перейти до границі цієї суми , коли всі прямують до нуля . Якщо - диференційована , то і при цьому теж прямуватиме до нуля . В результаті переходу до вказаної границі одержимо довжину дуги у вигляді

Обчислюючи момент інерції фігури відносно осі , слід вважати, що момент інерції вузенької смужки відносно осі, їй паралельної, дорівнює добутку маси смужки на квадрат її віддалі від осі. Розв'язуючи ці завдання, нескінченно малими величинами, порядок яких більший за одиницю, можна нехтувати. Звичайно, в цьому пункті всі викладки проводилися на інтуїтивному рівні , без належних обгрунтувань. Усі необхідні обгрунтування можуть бути наведені після детального вивчення даного розділу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]