Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Маркелов.doc
Скачиваний:
37
Добавлен:
19.09.2019
Размер:
1.02 Mб
Скачать

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

Петрозаводский Государственный Университет

Кафедра Физики Твёрдого Тела

Курсовой проект

Задача Кеплера. Численное моделирование орбиты.

Выполнил: Студент 21301 группы

Физико-технического факультета

Маркелов Дмитрий Юрьевич

Научный руководитель:

ст. преподаватель КФТТ

Логинов Дмитрий Владимирович

Петрозаводск, 2012

Содержание:

Глава 1. Исторический контекст

Глава 2. Приближение пробного тела

2.1 Геометрическое введение

2.2 Метрика Шварцшильда

2.3 Уравнения геодезических

2.3.1 Приближённая формула для отклонения света

2.3.2 Связь с классической механикой и прецессия эллиптических орбит

2.3.3 Круговые орбиты и их стабильность

2.3.4 Прецессия эллиптических орбит

2.4 Точное решение для орбиты в эллиптических функциях

2.4.1 Качественный характер возможных орбит

2.4.1.1 Квази-эллиптические орбиты

2.4.1.1.1 Стабильные круговые орбиты

2.4.1.1.2 Инфинитные орбиты

2.4.1.1.3 Асимптотически круговые орбиты

2.4.1.2 Падение на центр

2.5 Вывод уравнения орбит

2.5.1 Из уравнения Гамильтона — Якоби

2.5.2 Из уравнений Лагранжа

2.5.3 Из принципа Гамильтона

Глава 3. Постньютоновские подходы

3.1 Поправки к геодезическому решению

3.1.1 Излучение гравитационных волн и потеря энергии и момента импульса

Глава 4. Листинг программы

Глава 5. Вывод

Глава 6 Литература

Введение

- значимость ММФО

Помогает визуально наблюдать за движением планет.

- Задача Кеплера в общей теории относительности

Задача Кеплера вообще представляет собой проблему отыскания движения двух сферически-симметричных тел, взаимодействующих гравитационно. В классической теории тяготения решение этой проблемы было найдено самим Исааком Ньютоном: оказалось, что тела будут двигаться по коническим сечениям, в зависимости от начальных условий — по эллипсам, параболам или гиперболам. В рамках общей теории относительности с пуристической точки зрения эта задача представляется плохо поставленной, так как модель абсолютно твёрдого тела не возможна в релятивистской физике (смотри Парадокс Белла, Твёрдость по Борну), а не абсолютно. Абсолютно твёрдые тела не будут при взаимодействии сферически-симметричными. Другой подход включает переход к точечным телам, правомерный в ньютоновской физике, но вызывающий проблемы в ОТО. Помимо этого, кроме положений и скоростей тел необходимо задать также и начальное гравитационное поле (метрику) во всём пространстве — проблема начальных условий в ОТО. В силу указанных причин точного аналитического решения задачи Кеплера в ОТО не существует (аналогично задаче трёх тел в ньютоновской теории тяготения), но есть комплекс методов, позволяющих рассчитать поведение тел в рамках данной задачи с необходимой точностью: приближение пробного тела, постньютоновский формализм, численная ОТО. В статье часто и без напоминаний подразумевается, что гравитационное поле — это то же самое, что и пространство-время.

Цель работы - Задача Кеплера. Численное моделирование орбиты.

Глава 1. Исторический контекст

В 1859 году французский астроном, директор Парижской обсерватории Урбен Жан Жозеф Леверье нашёл, что прецессия орбиты Меркурия, определённая из наблюдений, не совсем совпадает с теоретически предсказанной — перигелий орбиты движется чуть быстрее, чем следует из теории Ньютона после учёта всех межпланетных возмущений. Эффект был малым — 38” в столетие, но значительно превышал ошибки измерений — примерно 1”. Значение открытия было велико и многие физики, астрономы и небесные механики XIX века занимались этим вопросом. Было предложено множество решений в рамках классической физики, самыми известными были: наличие невидимого облака межпланетной пыли вблизи Солнца, сплюснутость (квадрупольный момент) Солнца, ненайденный спутник Меркурия или новая более близкая к Солнцу планета Вулкан[3][4]. Так как ни одно из этих объяснений не выдержало проверки наблюдениями, некоторые физики начали выдвигать более радикальные гипотезы, что необходимо изменять сам закон тяготения, например, менять в нём показатель степени или добавлять в потенциал члены, зависящие от скорости тел.

Однако большинство таких попыток оказались противоречивыми. В своих трудах по небесной механике Лаплас показал, что если гравитационное взаимодействие между двумя телами не действует мгновенно (что эквивалентно введению потенциала, зависящего от скоростей), то в системе движущихся планет не будет сохраняться импульс — часть импульса будет передаваться гравитационному полю, аналогично тому, как это происходит при электромагнитном взаимодействии зарядов в электродинамике. С ньютоновой точки зрения, если гравитационное воздействие передаётся с конечной скоростью и не зависит от скоростей тел, то все точки планеты должны притягиваться к точке, где Солнце было несколько раньше, а не к одновременному его месторасположению. На этом основании Лаплас показал, что эксцентриситет и большие полуоси орбит в задаче Кеплера с конечной скоростью гравитации должны расти со временем — испытывать вековые изменения. Из верхних пределов на изменения этих величин, следующие из устойчивости Солнечной системы и движения Луны, Лаплас показал, что скорость распространения гравитационного ньютонова взамодействия не может быть ниже 50 миллионов скоростей света.

Сообщается ли притяжение от одного тела к другому мгновенно? Время передачи, если бы оно было для нас заметно, обнаружилось бы преимущественно вековым ускорением в движении Луны. Я предлагал это средство для объяснения ускорения, замеченного в упомянутом движении, и нашёл, что для удовлетворения наблюдениям должно приписать притягательной силе скорость в семь миллионов раз большую, чем скорость светового луча. А так как ныне причина векового уравнения – Луны хорошо известна, то мы можем утверждать, что притяжение передается со скоростью, по крайней мере в пятьдесят миллионов раз превосходящей скорость света. Поэтому, не опасаясь какой либо заметной погрешности, мы можем принимать передачу тяготения за мгновенную.

— П. С. Лаплас Изложение системы Мира Париж, 1797.

Метод Лапласа корректен для прямых обобщений ньютоновой гравитации, но может быть не применим к более сложным моделям. Так, например, в электродинамике движущиеся заряды притягиваются/отталкиваются не от видимых положений других зарядов, а от положений, которые они занимали бы в настоящее время, если бы двигались от видимых положений равномерно и прямолинейно — это является свойством потенциалов Лиенара-Вихерта[8]. Аналогичное рассмотрение в рамках общей теории относительности приводит к такому же результату с точностью до членов порядка (v / c)3.

В попытках избежать изложенных проблем между 1870 и 1900 годами множество учёных пытались использовать законы гравитационного взаимодействия, основанные на электродинамических потенциалах Вебера, Гаусса, Римана и Максвелла. В 1890 году Леви удалось получить стабильные орбиты и нужную величину сдвига перигелия путём комбинации законов Вебера и Римана. Другая успешная попытка была предпринята П. Гербером в 1898 году. Тем не менее, так как исходные электродинамические потенциалы оказались неверными (например, закон Вебера не вошёл в окончательную теорию электромагнетизма Максвелла), эти гипотезы были отвергнуты как произвольные. Некоторые другие попытки, такие как теория Г. Лоренца (1900 год), которые уже использовали теорию Максвелла, давали слишком малую прецессию.

Около 1904—1905 годов работы Х. Лоренца, А. Пуанкаре и А. Эйнштейна заложили фундамент специальной теории относительности, исключив возможность распространения любых взаимодействий быстрее, чем со скоростью света. Таким образом, встала задача заменить ньютоновский закон гравитации на другой, совместимый с принципом относительности, но дающий при малых скоростях и гравитационных полях почти ньютоновские эффекты. Такие попытки были сделаны Г. Пуанкаре (1905 и 1906), Г. Минковским (1908) иА. Зоммерфельдом (1910). Однако все рассмотренные модели давали слишком малую величину сдвига перигелия.

В 1907 году Эйнштейн пришёл к выводу, что для описания гравитационного поля необходимо обобщить тогдашнюю теорию относительности, сейчас называемую специальной. От 1907 по 1915 год Эйнштейн последовательно шёл к новой теории, используя в качестве путеводного свой принцип относительности. Согласно этому принципу однородное гравитационное поле действует одинаковым образом на всю материю и, следовательно, не может быть найдено свободно падающим наблюдателем. Соответственно, все локальные гравитационные эффекты воспроизводимы в ускоренно движущейся системе отсчёта и наоборот. Поэтому гравитация действует как сила инерции, возникающая из-за ускорения системы отсчёта, — такая как центробежная сила или сила Кориолиса; подобно всем этим силам гравитационная сила пропорциональна инертной массе. Как следствие этого обстоятельства получается, что в различных точках пространства-времени инерциальные системы отсчёта имеют ускорения друг относительно друга. Это возможно описать, только если пожертвовать классическим предположением о том, что наше пространство описывается евклидовой геометрией, и перейти к искривлённому пространству римановой геометрии. Более того, искривлённой оказывается связь пространства и времени, которая и проявляется как сила гравитации в обычных условиях. После восьми лет работы (1907—1915) Эйнштейн нашёл закон, показывающий, как пространство-время искривляется находящейся в нём материей —уравнения Эйнштейна. Гравитация отличается от сил инерции тем, что вызывается кривизной пространства-времени, которая может быть измерена инвариантно. Первые же решения полученных уравнений, полученные Эйнштейном (приближённо) и Шварцшильдом (точно), объяснили аномальную прецессию Меркурия и предсказали удвоенную величину отклонения света по сравнению с предыдущими эвристическими оценками. Это предсказание теории было подтверждено в 1919 году английскими астрономами.