Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат.АН. Экзамен-2. Билеты.Ответы.docx
Скачиваний:
8
Добавлен:
22.09.2019
Размер:
132.92 Кб
Скачать

1.Дифференцирование неявной функции;

44.8. Дифференцирование неявной функции

Функция z = ƒ (х; у) называется неявной, если она задается уравнением

неразрешенным относительно z. Найдем частные производные  неявной функции z, заданной уравнением (44.11). Для этого, подставив в уравнение вместо z функцию ƒ (х; у), получим тождество F(x;у;ƒ (х; у)) = 0. Частные производные по х и по у функции, тождественно равной нулю, также равны нулю:

откуда

Замечания.

а) Уравнение вида (44.11) не всегда определяет одну переменную как неявную функцию двух других. Так, уравнение х22+z2-4=0 определяет функции определенные в круге х22≤4, определенную в полукруге х2+у2 ≤ 4 при у≥ 0 и т. д., а уравнение cos(x + 2у +3z)- 4 = 0 не определяет никакой функции.

Имеет место теорема существования неявной функции двух переменных: если функция F(x; у; z) и ее производные F'x(x; у; z), F'y(x; у; z), F'z(x;y;z) определены и непрерывны в некоторой окрестности точки M0(x0;y0;z0), причем F(x0;y0;z0)=0, а F'z(x0;y0;z0)≠0, то существует окрестность точки М0, в которой уравнение (44.11) определяет единственную функцию z=ƒ(х;у), непрерывную и дифференцируемую в окрестности точки (х00) и такую, что ƒ(х00)=z0.

б) Неявная функция у=ƒ(х) одной переменной задается уравнением F(x;у)=0. Можно показать, что в случае, если удовлетворены условия существования неявной функции одной переменной (имеется теорема, аналогичная вышеуказанной), то производная неявной функции находится по формуле

2.Возрастание и убывание функции;

25.3. Возрастание и убывание функций

Одним из приложений производной является ее применение к исследованию функций и построению графика функции.

Установим необходимые и достаточные условия возрастания и убывания функции.

Теорема 25.6 (необходимые условия). Если дифференцируемая на интервале (a;b) функция ƒ(х) возрастает (убывает), то ƒ'(х)≥0 (ƒ"(х)≤0) для  x є (a;b).

Пусть функция ƒ(х) возрастает на интервале (α;b). Возьмем произвольные точки х и х+∆х на интервале (α;b) и рассмотрим отношение

Функция ƒ(х) возрастает, поэтому если ∆х>0, то х+∆х>х и ƒ(х+∆х)>ƒ(х); если ∆х<0, то х+∆х<х и ƒ(х+∆х)<ƒ(х). В обоих случаях

так как числитель и знаменатель дроби имеют одинаковые знаки.

 

По условию теоремы функция ƒ(х) имеет  производную в точке х и является пределом рассматриваемого отношения. Следовательно,

Аналогично рассматривается случай, когда функция ƒ (х) убывает на интервале (a;b).

Геометрически теорема 25.6 означает, что касательные к графику возрастающей дифференцируемой функции образуют острые углы с положительным направлением оси Ох или в некоторых точках (на рисунке 145 в точке с абсциссой х0) параллельны оси Ох.

Теорема 25.7 (достаточные условия). Если функция ƒ(х) дифференцируема на интервале (a;b) и ƒ'(х)>0 (ƒ'(х)<0) для  x є (a;b), то эта функция возрастает (убывает) на интервале (a;b).

Пусть ƒ'(х)>0. Возьмем точки х1 и х2 из интервала (a;b), причем x12. Применим к отрезку [x1;x2] теорему Лагранжа: ƒ(х2)- ƒ(x1)=ƒ'(с)(х2-x1), где с є (x1;x2). По условию ƒ'(с)>0, х21>0. Следовательно, ƒ(х2)-ƒ(х1)>0 или ƒ(х2)>ƒ(х1), т. е. функция ƒ(х) на интервале (a;b) возрастает.

Рассмотренные теоремы 25.6 и 25.7 позволяют довольно просто исследовать функцию на монотонность. Напомним, что функция возрастающая или убывающая называется монотонной (см. с. 102).