Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika.docx
Скачиваний:
12
Добавлен:
24.09.2019
Размер:
123.67 Кб
Скачать

Тема 7 второе начало термодинамики:

1) В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выберать так, чтобы ось х была направлена в сторону в направления переноса.

2) Вероятностное толкование понятия энтропии было дано в статистической физике Людвигом Больцманом. Для этого было введено понятие термодинамической вероятности (W) данного состояния некоторой системы. Термодинамическая вероятность означает число возможных неотличимых микроскопических состояний системы реализующих определенное макроскопическое состояние этой системы.

Рассмотрим простую систему всего из двух неотличимых молекул, находящихся в некотором объеме. Мысленно разделим этот объем на две части, и, пронумеровав молекулы, найдем число способов, которым можно разместить их в этих двух частях

Как видно из рисунка, всего таких способов будет четыре, но два нижних неотличимы, так как молекулы 1 и 2 совершенно одинаковы, и соответствуют одному и тому же макроскопическому состоянию системы. Таким образом, мы имеем три различных макроскопических состояния системы, номера которых обозначены слева на рисунке. Два верхних макросостояния реализуются только одним способом, а третье, нижнее двумя. Число способов и является термодинамической вероятностью W, величина которой приведена справа от рисунков. Все четыре способа равновероятны, поэтому большую часть времени система будет находиться в третьем состоянии. Вероятность p (на рисунке ее значения приведены справа от W) - конкретного макроскопического состояния определяется отношением числа способов, которым можно реализовать это состояние W к общему числу возможных способов размещения молекул. Первые два макросостояния более упорядоченные - в них мы можем выделить две области, в одной есть молекулы, в другой - нет. Третье макросостояние менее упорядоченное, так как мы не можем выделить таких областей. Это означает, что вероятность нахождения системы в менее упорядоченном макроскопическом состоянии больше, чем в упорядоченном. 

Мы рассмотрели только 2 молекулы. Число способов размещения n молекул в двух частях объема равно 2n, а число способов размещения всех молекул в одной половине объема равно 1. Из этого следует, что вероятность нахождения всех молекул в одной половине объема p = 1/2n. При большом числе молекул (в одном моле газа n = 6·1023) вероятность упорядоченного состояния, когда все молекулы соберутся в одной половине становится практически равной нулю. Таким образом, чем большим числом способов может быть реализовано определенное макроскопическое состояние системы (или, что одно и то же, чем больше термодинамическая вероятность W этого состояния), тем менее оно упорядоченное и наиболее вероятное. Энтропия термодинамического состояния системы определяется через термодинамическую вероятность как: S = k·lnW, где k – постоянная Больцмана. Это выражение энтропии через термодинамическую вероятность получило название "принцип Больцмана".

В статистической термодинамике энтропия не только функция состояния системы и физическая величина, характеризующая направленность процессов в природе, но и мера беспорядка и хаоса.

В изолированных системах все реальные процессы (например, расширение газа, диффузия, теплопередача) протекают в сторону увеличения энтропии. В результате этих процессов система приходит в состояние термодинамического равновесия, и ее макроскопические параметры (V, P, T) перестают меняться. В этом состоянии энтропия системы достигает максимального значения. Поэтому состояние термодинамического равновесия изолированной системы можно определить, как состояние с максимальным значением энтропии, или с максимальной величиной хаоса.

3) Закон возрастания энтропии в изолированной системе играет чрезвычайно важную роль. Можно сказать, что в известном смысле он физически содержательнее, чем закон сохранения энергии. В самом деле, закон сохранения энергии для изолированной системы утверждает, что переход из состояния / в состояние / / возможен лишь при условии, что U L. [1]

Закон возрастания энтропии, понимаемый как универсальный принцип, несовместим с незыблемым законом превращения и сохранения энергии, противоречит ему, так, как, не требуя количественного изменения энергии, он утверждает качественное выражение энергии, потерю энергией основного свойства - способности к непрерывным превращениям. [2]

Закон возрастания энтропии может быть применим наряду с законом превращения и сохранения энергии, если он понимается как принцип, безусловно ограниченный на современном этапе пределами земного опыта. [3]

Закон возрастания энтропии при необратимых процессах также часто называют вторым началом термодинамики. [4]

Закон возрастания энтропии может существовать рядом с законом сохранения энергии только при том условии, если он понимается как принцип, пусть весьма широкий, но безусловно ограниченный. [5]

Закон возрастания энтропии должен пониматься как частная закономерность, справедливая при определенных физических условиях. С философской точки зрения II закон термодинамики не может считаться решением вопроса о законах развития мира. [6]

Закон возрастания энтропии при необратимых процессах также часто называют вторым началом термодинамики. [7]

Закон возрастания энтропии в изолированной системе играет чрезвычайно важную роль. Можно сказать, что в известном смысле он физически содержательнее, чем закон сохранения энергии. В самом деле, закон сохранения энергии для изолированной системы утверждает, что переход из состояния / в состояние / / возможен лишь при условии, что U L. [8]

4) Циклический процесс – процесс, при котором начальное и конечное состояния газа совпадают. Обратимый циклический процесс начинается и заканчивается в одном и том же состоянии газа, проходя через ряд промежуточных равновесных состояний. Такой процесс может проходить в любом направлении. Процесс, сопровождающийся теплообменом между двумя телами, может быть обратимым лишь в том случае, если он происходит при одинаковых температурах тел.

5) Неравенство Клаузиуса (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.

Подведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода (определяется лишь начальным и конечным состояниями системы) - для квазистатических процессов неравенство Клаузиуса обращается в равенство[1].

6) Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

  • Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).

  • Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

 Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в то же время эквивалентных формулировок этого закона.

1 — Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе. Это явление называют рассеиванием или диссипацией энергии.

Приведем второе начало термодинамики в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (1865): Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния  , называемая энтропией, такая, что ее полный дифференциал [3]

2 — Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

переноса явления

ПЕРЕНОСА ЯВЛЕНИЯ - неравновесные процессы, в результате к-рых в физ. системе происходит пространственный перенос электрич. заряда, вещества, импульса, энергии, энтропии или к--л. др. физ. величины. Общую феноменологич. теорию П. я., применимую к любой системе (газообразной, жидкой или твёрдой), даёт термодинамика неравновесных процессов. Более детально П. я. изучает кинетика физическая .П. я. в газах рассматриваются на основе кинетической теории газов с помощью кинетического уравнения Больцмана для ф-цни распределения молекул; П. я. в металлах - на основе кинетич. ур-ния для электронов в металле; перенос энергии в непроводящих кристаллах - с помощью кинетич. ур-ния для фононов кристаллич. решётки. Общая теория П. я. развивается в неравно-весной статистич. механике на основе Лиувилля уравнения для ф-ции распределения всех частиц, из к-рых состоит система (см. Грина - Кубо формулы).  Причина П. я. - возмущения, нарушающие состояние термодинамич. равновесия: действие внеш. элек-трич. поля, наличие пространств. неоднородностей состава, темп-ры или ср. скорости движения частиц системы. Перенос физ. величины происходит в направлении, обратном её градиенту, в результате чего изолированная от внеш. воздействий система приближается к состоянию термодинамич. равновесия. Если внеш. воздействия поддерживаются постоянными, П. я. протекают стационарно.  П. я. характеризуются необратимыми потоками Ji физ. величины, напр. диффузионным потоком вещества, тепловым потоком или тензором потока импульса, связанного с градиентами скоростей. При малых отклонениях системы от термодинамич. равновесия потоки линейно зависят от термодинамич. сил Хk, вызывающих отклонение от термодинамич. равновесия, и описываются феноменологич. ур-ниями

где Lik - феноменологич. коэф. переноса (в термодинамике неравновесных процессов) или кинетические коэффициенты (в физ. кинетике), вычисляемые с помощью решения кинетич. ур-ний. Термодинамич. силы Хk вызывают необратимые потоки; напр., градиент темп-ры вызывает поток теплоты (теплопроводность ),градиент концентрации вещества - поток компонента смеси (диффузия ),градиент массовой скорости - поток импульса (вязкое течение; см. Вязкость).  Перенос вещества, вызванный градиентом темп-ры, - термодиффузию и обратный ей процесс переноса тепла вследствие градиента концентрации (Дюфура эффект)называют перекрёстными процессами. Для перекрёстных процессов в отсутствии магн. поля имеет место соотношение симметрии Lik = Lki(Онсагера теорема ),являющееся следствием микроскопич. обратимости ур-ний, описывающих движение частиц. Если магн. поле отлично от нуля, то при замене i k нужно изменить направление магн. поля на противоположное.  П. я. обычно сопровождаются производством энтропии  в единицу времени:

Это выражение является формулировкой второго начала термодинамики для П. я. В случае стационарных П. я. вся образующаяся энтропия отводится из системы.  Плотности потоков, кроме диссипативных частей, пропорциональных термодинамич. силам и связанных с производством энтропии, могут содержать недиссипативные части, к-рые соответствуют конвекц. переносу физ. величин с гидродинамич. скоростью v(x,t). Локальная плотность энтропии S(x,t)тоже переносится с гпдродинамич. скоростью, так что производство энтропии происходит в элементе жидкости, движущейся с гидродинамич. скоростью. Поэтому S(x,t)удовлетворяет ур-нию баланса:

где  - плотность производства энтропии, связанная с производством энтропии:

П. я. происходят не только в гомогенных системах, внутри к-рых отсутствуют поверхности раздела, но и в гетерогенных системах, состоящих из гомогенных подсистем, отделённых друг от друга или естеств. поверхностями раздела (таких, как жидкость и её пар), или полупроницаемыми мембранами. При возникновении в гетерогенной системе разности электрич. потенциалов, перепада давлений компонент, темп-р и т. д. между подсистемами возникают необратимые потоки заряда, компонент вещества, теплоты и т. п. Эти потоки связаны с термодинамич. силами линейными соотношениями, и П. я. в гетерогенных системах также сопровождаются производством энтропии. К подобным П. я. относятся электрокинетнческие явления - перенос заряда и вещества вследствие перепада электрич. потенциала и давления (в частности, фильтрация), термомеханические эффекты - перенос теплоты и массы в результате перепада темп-ры и давления в гелии жидком.  К П. я. относятся также перенос энергии электронного возбуждения от возбуждённых атомов к невозбуждённым в веществе иперенос излучения в среде при наличии процессов испускания, поглощения и рассеяния. Рассеяние и размножение нейтронов является примером П. я., к-рый изучается на основе кинетич. ур-ния для нейтронов с учётом ядерных взаимодействий со средой. Интенсивно развивается теория П. я. на основе неравновесной статистической механики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]