Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ К МЕЖДИСЦИПЛИНАРНОМУ ЭКЗАМЕНУ v.2-для с...doc
Скачиваний:
15
Добавлен:
25.09.2019
Размер:
1.52 Mб
Скачать

Сравнение sas и sata

  • SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN-идентификаторами (WWN — англ. World Wide Name). Для подключении SATA-устройства к домену SAS используется специальный протокол STP (англ. Serial ATA Tunneled Protocol), описывающий согласование идентификаторов SAS и SATA.[3]

  • Устройства SATA 1 и SAS поддерживают тегированные очереди команд TCQ(англ. Tagged Command Queuing). В то же время, устройства SATA версии 2 поддерживают как TCQ, так и англ. Native Command Queuing (NCQ).

  • SATA использует набор команд ATA, который позволяет работать с жёсткими дисками, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры, принтеры и др. (Накопители на оптическом диске, подключаемые через SATA, на самом деле являются целевыми устройствами SCSI, для доставки SCSI команд к которым используется SATA);

  • Аппаратура SAS поддерживает связь инициатора с целевыми устройствами по нескольким независимым линиям: в зависимости от реализации можно повысить отказоустойчивость системы и/или увеличить скорость передачи данных. Интерфейс SATA версии 1 такой возможности не имеет. В то же время, интерфейс SATA версии 2 использует дубликаторы портов для повышения отказоустойчивости.

  • Преимущество SATA — в низком энергопотреблении и невысокой стоимости оборудования, а интерфейса SAS — большей надёжности.

Разъёмы

Как правило, разъёмы SAS значительно меньше разъёмов традиционного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей размером 2,5 дюйма.

Существует несколько вариантов разъёмов SAS:

  • SFF 8482 — вариант, механически совместимый с разъёмом интерфейса SATA. За счет этого возможно подключать устройства SATA к контроллерам SAS. Подключить же SAS-устройство к интерфейсу SATA — не получится, этому препятствует отсутствие посередине разъема специального выреза-ключа (см. изображение разъема в таблице ниже);

  • SFF 8484 — внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

  • SFF 8470 — разъём с плотной упаковкой контактов для подключения внешних устройств (разъём такого типа применяется в интерфейсе Infiniband, а кроме того, может использоваться для подключения внутренних устройств); позволяет подключить до 4 устройств;

  • SFF 8087 — уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств;

  • SFF 8088 — уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств;

USB (ю-эс-би, англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, треугольник и квадрат, расположенные на концах древовидной блок-схемы.

Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА, у USB 3.0 — 900 мА).

IEEE 1394 (FireWire, i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

  • Apple — FireWire

  • Sony — i.LINK

  • Yamaha — mLAN

  • TI — Lynx

  • Creative — SB1394

  1. Обмен данными посредством протоколов OMF,AAF,XML.

  1. Понятие обработки звука. Основные требования применяемые к используемым приборам обработки звука.

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное "сворачивание" сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или "объёмности" звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

  1. Принципы коммутации устройств обработки звука. Применяемые интерфейсы для приборов аналоговой и цифровой коммутации.

  1. Динамическая обработка звука. Компрессор. Лимитер. Экспандер. Гейт. Максимайзер. Дакер. Метод side-chain.

Компрессор (от англ. «compress» — сжимать, сдавливать) — это электронное устройство или компьютерная программа, используемое для уменьшения динамического диапазона звукового сигнала, иными словами, компрессор позволяет сделать более узкой разницу между самым тихим и самым громким звуком.

В подавляющем большинстве компрессоры относятся к профессиональному звуковому оборудованию, так как встретить их в бытовой сфере можно крайне редко.

На сегодняшний день можно встретить ламповые, транзисторные и цифровые компрессоры.

Ручная настройка времени атаки и отпускания. Работа компрессора и качество динамической обработки во многом зависят от установок времени атаки (ATTACK) и отпускания (RELEASE). При обработке сигнала отдельных инструментов (барабан, гитара, и т.д) и при использовании компрессора для защиты оборудования от переходов сигнала необходима возможность ручной настройки.

Параметры компрессора

Threshold (Порог)

Threshold (порог) - это уровень, выше которого сигнал начинает подавляться. Обычно устанавливается в дБ.

Ratio (Соотношение)

Ratio (соотношение) - определяет соотношение входящего/выходящего сигналов, превышающих порог (Threshold). Например, соотношение 4:1 означает, что сигнал превышающий порог на 4 дБ, сожмётся до уровня 1 дБ выше порога. Самое высокое соотношение ∞:1 обычно достигается с помощью соотношения 60:1, и фактически означает, что любой сигнал, превышающий порог будет снижен до порогового уровня (за исключением коротких резких изменений громкости, называемых "атакой").

Attack и Release (атака и восстановление)

Компрессор может обеспечить определенную степень контроля над тем, как быстро он действует. "Фаза атаки" это период, когда компрессор снижает громкость до уровня, который определяется соотношением. "Фаза восстановления" это период, когда компрессор увеличивает громкость до уровня определённого соотношением, или к нулю дБ, когда уровень падает ниже порогового значения. Продолжительность каждого периода определяется скоростью изменения уровня сигнала. Для более интуитивно понятного управления, параметры атаки и восстановления компрессора обозначаются единицей времени (как правило это миллисекунды). Это время, которое потребуется для изменения уровня сигнала на определённое количество дБ, на какое количество дБ решает завод-изготовитель, очень часто это 10 дБ. Например, если компрессор имеет постоянное время со ссылкой на 10 дБ, и время атаки установлено в 1 мс, то для сокращения звука на 10 дБ потребуется 1 мс, и 2 мс должно сократить на 20 дБ.

Во многих компрессорах атака и восстановление регулируются пользователем. Однако в некоторых компрессорах они определяются разработанной схемой и не могут быть изменены пользователем. Иногда параметры атаки и восстановления являются "автоматическими" или "программо-зависимыми", это означает, что их время изменяется в зависимости от входящего сигнала. Так как громкость исходного материала изменяет компрессор, то компрессор может изменить характер сигнала тонко или довольно заметным образом в зависимости от используемых настроек.

Следует отметить, что разные производители компрессоров измеряют время атаки по-разному. Одни разработчики берут за время атаки тот промежуток времени, за который срабатывает компрессор после того, как сигнал преодолеет границу порогового значения, другие же считают, что время атаки означает, сколько уйдёт у компрессора времени на то, чтобы ослабить сигнал на 60-90% от максимально возможного значения. Это нередко приводит к некоторой путанице.

Лимитер (англ. Limiter - ограничитель) - ограничитель динамического диапазона (часто путается с максимайзером). В большинстве случаев используется для предотвращения перегрузки (клиппинга) и подавления кратковременных всплесков уровня (пиков), при выравнивании динамики сигнала.