Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ К МЕЖДИСЦИПЛИНАРНОМУ ЭКЗАМЕНУ v.2-для с...doc
Скачиваний:
15
Добавлен:
25.09.2019
Размер:
1.52 Mб
Скачать

Классификация По типу обработки входного сигнала

По типу обработки входного сигнала и схеме построения выходного каскада усилители можно разделить на:

  • класс «A» — линейный режим работы усилительного элемента (ток смещения максимален), аналоговая обработка сигнала

  • класс «AB» — режим работы с большим углом отсечки (>90°), аналоговая обработка сигнала

  • класс «B» — режим работы с углом отсечки равным 90°, аналоговая обработка сигнала

  • класс «C» — режим работы с малым углом отсечки (<90°), аналоговая обработка сигнала

  • класс «D» — усилительный элемент работает в ключевом режиме, применяется широтно-импульсная модуляция — изменяется (линейно, не имея дискретных значений) скважность импульсов, в соответствии с текущим значением входного сигнала

  • класс «T» — усилительный элемент работает в ключевом режиме, также применяется широтно-импульсная модуляция — изменяются (линейно, не имея дискретных значений) как скважность, так и частота импульсов, в соответствии с текущим значением входного аналогового сигнала

По конструктивным признакам

По типу применения в конструкции усилителя активных элементов:

  • ламповые — на электронных, электровакуумных лампах. Составляли основу всего парка УНЧ до 70-х годов. В 60-х годах выпускались ламповые усилители очень большой мощности (до десятков киловатт). В настоящее время используются в качестве инструментальных усилителей и в качестве звуковоспроизводящих усилителей. Составляют львиную долю аппаратуры класса HI- END. А также занимают большую долю рынка профессиональной и полупрофессиональной гитарной усилительной аппаратуры.

  • транзисторные — на биполярных или полевых транзисторах. Такая конструкция оконечного каскада усилителя является достаточно популярной, благодаря своей простоте и возможности достижения большой выходной мощности, хотя в последнее время активно вытесняется усилителями на базе интегральных микросхем.

  • интегральные — на интегральных микросхемах (ИМС). Существуют микросхемы, содержащие на одном кристалле как предварительные усилители, так и оконечные усилители мощности, построенные по различным схемам и работающие в различных классах. Из преимуществ - минимальное количество элементов и, соответственно, малые габариты.

  • гибридные — часть каскадов собрана на полупроводниковых элементах, а часть на электронных лампах. Иногда гибридными также называют усилители, которые частично собраны на интегральных микросхемах, а частично на транзисторах или электронных лампах.

Трансформаторное согласование с нагрузкой

По виду согласования выходного каскада с нагрузкой

По виду согласования выходного каскада усилителя с нагрузкой их можно разделить на два основных типа:

  • трансформаторные — в основном такая схема согласования применяется в ламповых усилителях. Обусловлено это необходимостью согласования большого выходного сопротивления лампы с малым сопротивлением нагрузки, а также необходимостью гальванической развязки выходных ламп и нагрузки. Некоторые транзисторные усилители (Например, трансляционные усилители, обслуживающие сеть абонентских громкоговорителей, некоторые Hi-End аудиоусилители) также имеют трансформаторное согласование с нагрузкой.

  • бестрансформаторные — в силу дешевизны, малого веса и большой полосы частот бестрансформаторные усилители получили наибольшее распространение. Бестрансформаторные схемы легко реализуются на транзисторах. Обусловлено это низким выходным сопротивлением транзисторов в схеме эмиттерного (истокового) повторителя, возможностью применения комплементарных пар транзисторов. На лампах бестрансформаторные схемы реализовать сложнее, это либо схемы, работающие на высокоомную нагрузку, либо сложные схемы с большим количеством параллельно работающих выходных ламп.